DSpace logo

Use este identificador para citar ou linkar para este item: http://repositorioinstitucional.uea.edu.br//handle/riuea/4069
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSilva Junior, Alexander Leonardo-
dc.date.available2022-07-25-
dc.date.available2022-08-08T16:35:36Z-
dc.date.issued2020-11-16-
dc.identifier.urihttp://repositorioinstitucional.uea.edu.br//handle/riuea/4069-
dc.description.abstractIntroduction: Sickle cell disease is the most common monogenic disorder around the world. The mutation leads to a shift on hemoglobin molecule, which takes to hemolysis condition, marked mainly during acute inflammatory crisis and characterized by immune system activation. The molecule participation as chemokines, anaphylatoxins, cytokines and growth factors released specially by leukocytes and endothelial cells increase the risk to develop vaso-occlusive crisis and so, the clinical complications observed in these patients. Due to immune molecule influence on sickle cell physiopathology, under different clinical status, related to scarcity of biomarkers studies, we highlight the need to characterize the concentration of these proteins on inflammatory state of sickle cell. Objective: Evaluate the immunological profile of patients with sickle cell anemia under different clinical status accompanied at Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM). Materials and methods: This is a longitudinal study which used biological samples of 53 healthy blood donors, 27 patients with sickle cell anemia in steady-state condition, 22 patients in acute vaso-occlusive crisis, in which were accompanied with one more sample collection, at convalescence. The samples were from previous projects approved by CEP-HEMOAM. The blood count was performed with whole blood, while serum was used to quantification of cytokines, chemokines and growth factors by Luminex technic, with the kit BioPlex Pro-Human Cytokine 27-Plex from BioRad at FIOCRUZ-MG and analyzed by BioPlex Manager software. Anaphylatoxins were measured at Fundação HEMOAM by Cytometric Bead Array technic, with kit The BD CBA Human Anaphylatoxin, and FCAP Array software was used for acquisition. Statistical analysis was performed on GraphPad Prism v. 5.0 software, with confidence interval of 95% and p < 0.05 as statistically significant. Correlation network was performed on software Cytoscape v. 3.1. and heatmaps on software R 3.0.1. Results: We identified higher concentration of IL-2, IL-4, IL-5, IL-7, PDGF-BB and G-CSF on vaso-occlusive patients, which further demonstrates a biomarker signature to this clinical condition. Other molecules showed different concentration under clinical profile, but were not exclusive only to crisis status. IL-10, IL-1ra and IL-1β concentration were identified by bioinformatics technics as potential markers to cluster patients under clinical condition. In convalescence condition, CXCL8, CCL4, IL-1ra and PDGF-BB showed potentiality as laboratorial markers of follow-up after crisis. Correlation analysis showed higher relation of molecules in crisis condition, which reduced through convalescence until steady-state. Conclusion: Vaso-occlusive crisis profile is marked by anti-inflammatory and cell proliferation cytokines. IL-1ra and PDGF-BB are potential candidates as laboratorial markers to laboratorial recovery, and serum concentration of IL-10, IL-1ra and IL-1β might be used to characterize the clinical status of sickle cell patient. More studies must be conducted to evaluate the potentiality of these molecules on clinical progression, on prognosis and follow- up of these patients after crisis.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade do Estado do Amazonaspt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectMoléculaspt_BR
dc.subjectAnemia Hemolíticapt_BR
dc.subjectAmazônia Brasileirapt_BR
dc.subjectPerfil Imunept_BR
dc.titleAvaliação do perfil de biomarcadores imunológicos no perfil clínico de pacientes com anemia falciformept_BR
dc.typeDissertaçãopt_BR
dc.date.accessioned2022-08-08T16:35:36Z-
dc.contributor.advisor-co1Paula, Erich Vinicius de Paula-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0983518713985469pt_BR
dc.contributor.advisor1Marie, Adriana Malheiro Alle-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2627415957053194pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8588604910962305pt_BR
dc.description.resumoIntrodução: A anemia falciforme é a doença monogênica de maior frequência no mundo. A mutação causa uma mudança na molécula de hemoglobina, que leva a um quadro de hemólise, acentuado em crises agudas de inflamação e caracterizado pela ativação do sistema imunológico. A participação de moléculas como quimiocinas, anafilotoxinas, citocinas e fatores de crescimento liberadas principalmente pelos leucócitos e células endoteliais aumenta o risco de desenvolver crises vaso-oclusivas e assim, as complicações clínicas observadas nesses pacientes. Devido à atuação das moléculas imunes na fisiopatologia falciforme, em diferentes quadros clínicos, ligado à escassez de estudos de biomarcadores, salienta-se a necessidade de caracterizar a concentração destas proteínas no estado inflamatório da anemia falciforme. Objetivo: Avaliar o perfil de moléculas imunológicas em pacientes com anemia falciforme em diferentes estados clínicos acompanhados na Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM). Material e métodos: Este é um estudo longitudinal que utilizou amostras biológicas de 53 doadores saudáveis, 27 pacientes com anemia falciforme em estado estacionário e 22 em crise aguda vaso-oclusiva, sendo estes últimos acompanhados com mais uma coleta, na fase de convalescença. As amostras foram provenientes de projetos já aprovados pelo CEP-HEMOAM. O hemograma foi realizado em analisador automatizado com amostras de sangue total, enquanto o soro foi utilizado na quantificação de citocinas, quimiocinas, fatores de crescimento pela técnica de Luminex, pelo kit The BioPlex Pro-Human Cytokine 27-Plex da BioRad na FIOCRUZ-MG e analisadas pelo software BioPlex Manager. As anafilotoxinas foram dosadas na Fundação HEMOAM pela técnica de Cytometric Bead Array, com o kit The BD™ CBA Human Anaphylatoxin e para aquisição foi utilizado o software FCAP Array. A análise estatística foi realizada no software GraphPad Prism v. 5.0, com intervalo de confiança de 95% e valor de p < 0.05 como estatisticamente significativo. A rede de correlação foi feita no software Cytoscape v.3.1 e os heatmaps no software R 3.0.1. Resultados: Identificamos maior concentração de IL-2, IL-4, IL-5, IL-7, PDGF-BB e G-CSF nos pacientes em crise vaso-oclusiva, que posteriormente demonstraram uma assinatura de biomarcadores para esta condição clínica. Outras moléculas apresentaram diferenças entre os perfis clínicos, mas não foram exclusivas apenas para o grupo de crise. A concentração de IL-10, IL-1ra e IL-1β foram identificadas por técnicas bioinformáticas com potencial para caracterizar os pacientes entre os estados clínicos. Na fase de convalescença, a CXCL8, CCL4, IL-1ra e PDGF-BB se mostraram potenciais marcadores de acompanhamento laboratorial após a crise. A análise da correlação mostrou maior relação das moléculas entre si no estado de crise, que tende a reduzir através da fase de convalescença, até o estado estacionário. Conclusão: O perfil de crise é marcado por citocinas anti-inflamatórias e de proliferação celular. IL-1ra e PDGF-BB são potenciais candidatos para marcadores de recuperação laboratorial, e concentração sérica de IL-10, IL- 1ra e IL-1β podem ser utilizados para caracterizar o estado clínico do paciente falciforme. Mais estudos devem ser conduzidos para avaliar o potencial destas moléculas na progressão clínica, no prognóstico e no acompanhamento dos pacientes após a crise.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.programPPGH -PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIApt_BR
dc.relation.references9. REFERÊNCIAS BIBLIOGRÁFICAS 1. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376:2018–31. 2. Naoum PC. Interferentes eritrocitários e ambientais na anemia falciforme. Rev Bras Hematol Hemoter. 2000;22(1):5–22. 3. Sundd P, Gladwin MT, Novelli EM. Pathophysiology of Sickle Cell Disease. 2018;(October):261–90. 4. Faes C, Sparkenbaugh EM, Pawlinski R. Hypercoagulable state in sickle cell disease. Clin Hemorheol Microcirc. 2018;68(2–3):301–18. 5. Vekilov PG. Sickle-cell haemoglobin polymerization: is it the primary pathogenic event of sickle-cell anaemia ? Br J Haematol. 2007;139(1):173–84. 6. Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, Krishnamurti L, et al. Sickle cell disease. Nat Rev Dis Prim. 2018;4:1–22. 7. Rees DC, Gibson JS. Biomarkers in sickle cell disease. Br J Haematol. 2011;156(1):433–45. 8. Piel FB, Steinberg MH, Rees DC. Sickle Cell Disease. N Engl J Med. 2017;376(16):1561–73. 9. Herrick JB. Peculiar Elongated and Sickle-shaped Red Blood Corpuscles in a Case of Severe Anemia. Jama. 1910;312(10):179–84. 10. Neel J V. The Clinical Detection of the Genetic Carriers of Inherited Disease. Medicine (Baltimore). 1947;26(2):115–54. 11. Pauling L, Itano HA, Singer SJ, Wells IC. Sickle Cell Anemia, a Molecular Disease. Science (80- ). 1949;110(3):543–8. 12. Luzzatto L. Sickle cell anaemia and malaria. Mediterr J Hematol Infect Dis. 2012;4(1):1–6. 13. Allison AC. Protection Afforded by Sickle-Cell Trait Against Subtertian Malarial Infection. Br Med J. 1954;1(1):290–4. 14. Saúde M da. Doença Falciforme: diretrizes básicas da linha de cuidado. 2015 p. 1–84. 15. Brasil. Portaria N° 822, de 06 de Junho de 2001. 2001 p. 1–19. 16. Lobo CL de C, Bueno LM, Moura P, Ogeda LL, Castilho S, Carvalho SMF de. Triagem neonatal para hemoglobinopatias no Rio de Janeiro , Brasil. Rev Panam Salud Publica. 2003;13(2):154–9. 17. Brasil M da S. Doença Falciforme: Conhecer para Cuidar. 2015 p. 1–40. 18. Brasil M da S. Doença Falciforme: Condutas básicas para tratamento. 2012 p. 1–63. 19. Cesar P, Dhyani A, Schwade LA, Acordi P, Albuquerque CX, Nina R, et al. Epidemiological, clinical, and severity characterization of sickle cell disease in a population from the Brazilian Amazon. Hematol Oncol Stem Cell Ther [Internet]. 2019;12(4):204–10. Available from: https://doi.org/10.1016/j.hemonc.2019.04.002 20. Zhang D, Xu C, Manwani D, Frenette PS. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood J. 2016;127(7):801–10. 21. Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. Vol. 8. 2015. 66 1195 p. 22. Xu H, Wandersee NJ, Guo Y, Jones DW, Holzhauer SL, Hanson MS, et al. Sickle cell disease increases high mobility group box 1: a novel mechanism of in flammation. Blood. 2014;124(26):3978–82. 23. Park JS, Svetkauskaite D, He Q, Kim J-Y, Strassheim D, Ishizaka A, et al. Involvement of Toll-like Receptors 2 and 4 in Cellular Activation by High Mobility Group Box 1 Protein. J Biol Chem [Internet]. 2004;279(9):7370–7. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M306793200 24. Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim J-Y, Strassheim D, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol [Internet]. 2006;290(3):917–24. Available from: http://ajpcell.physiology.org/content/290/3/C917.abstract 25. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26(2):174–9. 26. Cruvinel WDM, Júnior DM, Júlio Antonio Pereira Araújo, Catelan TTT, Souza AWS de, Silva NP da, et al. Sistema Imunitário – Parte I Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol. 2010;50(4):434–61. 27. Alam MZ, Devalaraja S, Haldar M. The Heme Connection: Linking Erythrocytes and Macrophage Biology. Front Immunol. 2017;8(33):6–11. 28. Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123(3):377–90. 29. Lin S, Yin Q, Zhong Q, Lv F, Zhou Y, Li J, et al. Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation [Internet]. 2012;9(46):1–14. Available from: http://www.jneuroinflammation.com/content/9/1/46 30. Omoti CE. Haematological Values in Sickle Cell Anaemia in Steady State and During Vaso-Occlusive Crisis in Benin City, Nigeria. Ann Afr Med. 2005;4(2):62–7. 31. Beers EJ Van, Yang Y, Raghavachari N, Tian X, Allen D, Nichols J, et al. Iron, Inflammation and Early Death with Sickle Cell Disease. Circ Res. 2015;116(2):298– 306. 32. Chantrathammachart P, Mackman N, Sparkenbaugh E, Wang J-G, Parise L V., Kirchhofer D, et al. Tissue factor promotes activation of coagulation and inflammation in a mouse model of sickle cell disease. Blood. 2012;120(3):636–47. 33. Merle NS, Noe R, Halwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement system part II: role in immunity. Front Immunol. 2015;6(257):1–26. 34. Merle NS, Boudhabhay I, Leon J, Fremeaux-Bacchi V, Roumenina LT. Complement activation during intravascular hemolysis: Implication for sickle cell disease and hemolytic transfusion reaction. Transfus Clin Biol [Internet]. 2019; Available from: https://doi.org/10.1016/j.tracli.2019.02.008 35. Merle NS, Paule R, Leon J, Daugan M, Robe-rybkine T, Poillerat V, et al. P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR- 4/heme-dependent manner. PNAS. 2019;116(13):6280–5. 36. Murphy K. Imunobiologia de Janeway. Artmed Editora. 2014. 888 p. 37. Merle NS, Grunenwald A, Rajaratnam H, Gnemmi V, Frimat M, Figueres M, et al. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI insight. 2018;3(12):1–17. 38. Wouters D, Zeerleder S. Complement inhibitors to treat IgM-mediated autoimmune hemolysis. Hematologica. 2015;100(11):1388–95. 67 39. Gavriilaki E, Mainou M, Christodoulou I, Koravou E-E, Paleta A, Touloumenidou T, et al. In vitro evidence of complement activation in patients with sickle cell disease. Haematologica. 2017;102(1):481–2. 40. Morigi M, Galbusera M, Gastoldi S, Buelli S, Pezzotta A, Pagani C, et al. Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis. J Immunol. 2011;187:172–80. 41. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta [Internet]. 2014;1843(11):2563–82. Available from: http://dx.doi.org/10.1016/j.bbamcr.2014.05.014 42. Gee K, Guzzo C, Mat NFC, Ma W, Kumar A. The IL-12 Family of Cytokines in Infection, Inflammation and Autoimmune Disorders. Inflamm Allergy - Drug Targets. 2009;8(1):40–52. 43. Smith AJP, Humphries SE. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev. 2009;20(1):43–59. 44. Commins SP, Borish L, Steinke JW. Immunologic messenger molecules: Cytokines, interferons, and chemokines. J Allergy Clin Immunol [Internet]. 2010;125(2):S53–72. Available from: http://dx.doi.org/10.1016/j.jaci.2009.07.008 45. Hoffbrand A V., Moss PAH. Fundamentos em Hematologia. 6th ed. Porto Alegre; 2013. 46. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, et al. CXC chemokines in angiogenesis. J Leukoc Biol. 2000;68:1–8. 47. Young E, Lee Z, Song YW. CXCL10 and autoimmune diseases. Autoimmun Rev [Internet]. 2009;8(5):379–83. Available from: http://dx.doi.org/10.1016/j.autrev.2008.12.002 48. Jing H, Vassiliou E, Ganea D. Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. J Leukoc Biol. 2003;74(1):868–79. 49. Gupta PK, Prabhakar S, Sharma S, Anand A. Vascular endothelial growth factor-A (VEGF-A) and chemokine ligand-2 (CCL2) in Amyotrophic Lateral Sclerosis (ALS) patients. J Neuroinflammation. 2011;8(47):1–8. 50. Ren M, Guo Q, Guo L, Lenz M, Qian F, Koenen RR, et al. Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO J [Internet]. 2010;29(23):3952–66. Available from: http://dx.doi.org/10.1038/emboj.2010.256 51. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol. 2001;2(12):1126–32. 52. Finklestein SP, Apostolides PJ, Caday CG, Prosser J, Philips MF, Klagsbrun M. Increased basic fibroblast growth factor (bFGF) immunoreactivity at the site of focal brain wounds. Brain Res. 1988;460:253–9. 53. Pepper MS, Ferrara N, Orci L, Montesano R. Potent Synergism Between Vascular Edothelial Growth Factor and Basic Fibroblast Growth Factor in the Induction of Angiogenesis in vitro. Biochem Biophys Res Commun. 1992;189(2):824–31. 54. Xue Y, Lim S, Yang Y, Wang Z, Jensen LDE, Hedlund E-M, et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med [Internet]. 2011;18(1):100–10. Available from: http://dx.doi.org/10.1038/nm.2575 55. Hellberg C, Ostman A, Heldin CH. PDGF and Vessel Maturation. Angiogenes Inhib. 2010;1(1):103–14. 68 56. Sakiyama-elbert SE, Das R, Gelberman RH, Harwood F, Amiel D, Thomopoulos S. Controlled Release Kinectics and Biologic Activity of PDGF-BB for Use in Flexor Tendon Repais. J Hand Surg Am. 2008;33(9):1548–57. 57. Croll SD, Ransohoff RM, Cai N, Zhang Q, Martin FJ, Wei T, et al. VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp Neurol. 2004;187:388–402. 58. Ping Y, Yao X, Jiang J, Zhao L, Yu S, Jiang T, et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol. 2011;224:344–54. 59. Keikhaei B, Mohseni AR, Norouzirad R, Alinejadi M, Ghanbari S, Shiravi F, et al. Altered levels of pro-inflammatory cytokines in sickle cell disease patients during vaso-occlusive crises and the steady state condition. Eur Cytokine Netw. 2013;24(1):45–52. 60. Machado RF, Mack AK, Martyr S, MacArthur P, Sachdev V, Ernst I, et al. Severity of pulmonary hypertension during vaso-occlusive pain crisis and exercise in patients with sickle cell disease. Br J Haematol. 2006;136(1):319–25. 61. Carvalho MOS, Araujo-Santos T, Reis JHO, Rocha LC, Cerqueira BA V., Luz NF, et al. Inflammatory mediators in sickle cell anaemia highlight the difference between steady state and crisis in paediatric patients. Br J Haematol. 2018;182(1):933–6. 62. Adisa OA, Hu Y, Ghosh S, Aryee D, Osunkwo I, Ofori-Acquah SF. Association between plasma free haem and incidence of vaso-occlusive episodes and acute chest syndrome in children with sickle cell disease. Br J Haematol. 2013;162(5):702–5. 63. Pathare A, Al Kindi S, Alnaqdy AA, Daar S, Knox-Macaulay H, Dennison D. Cytokine Profile of Sickle Cell Disease in Oman. Am J Hematol. 2004;77(4):323–8. 64. Canalli AA, Conran N, Fattori A, Saad STO, Costa FF. Increased adhesive properties of eosinophils in sickle cell disease. Exp Hematol. 2004;32(1):728–34. 65. Taylor R. Interpretation of the Correlation Coefficient: A Basic Review. J Diagnostic Med Sonogr. 1990;6(1):35–9. 66. Assis A, Conran N, Canalli AA, Lorand-Metze I, Saad STO, Costa FF. Effect of Cytokines and Chemokines on Sickle Neutrophil Adhesion to Fibronectin. Acta Haematol. 2005;113:130–6. 67. Garcia NP, Júnior ALS, Soares GAS, Costa TCC, Santos APC dos, Costa AG, et al. Sickle Cell Anemia Patients Display an Intricate Cellular and Serum Biomarker Network Highlighted by TCD4+CD69+ Lymphocytes, IL-17/MIP-1β, IL-12/VEGF, and IL-10/IP-10 Axis. J Immunol Res. 2020;2020. 68. Musa BOP, Onyemelukwe GC, Hambolu JO, Mamman AI, Isa AH. Pattern of Serum Cytokine Expression and T-Cell Subsets in Sickle Cell Disease Patients in Vaso- Occlusive Crisis. Clin Vaccine Immunol. 2010;17(4):602–8. 69. Zhang J-M, An J. Cytokines, Inflammation and Pain. Int Anesth Clin. 2007;45(2):27– 37. 70. Barbu EA, Mendelsohn L, Samsel L, Thein SL. Pro-inflammatory cytokines associate with NETosis during sickle cell vaso-occlusive crises. Cytokine [Internet]. 2020;127(154933):1–5. Available from: https://doi.org/10.1016/j.cyto.2019.154933 71. Qari MH, Dier U, Mousa SA. Biomarkers of Inflammation, Growth Factor, and Coagulation Activation in Patients With Sickle Cell Disease. Clin Appl Thromb. 2012;18(2):195–200. 72. Asare K, Gee BE, Stiles JK, Wilson NO, Driss A, Quarshie A, et al. Plasma interleukin-1β concentration is associated with stroke in sickle cell disease. Cytokine. 2010;49(1):39–44. 73. Sarray S, Saleh LR, Saldanha FL, Al-habboubi HH, Mahdi N, Almawi WY. Cytokine Serum IL-6, IL-10, and TNFα levels in pediatric sickle cell disease patients during 69 vasoocclusive crisis and steady state condition. Cytokine [Internet]. 2015;72(1):43–7. Available from: http://dx.doi.org/10.1016/j.cyto.2014.11.030 74. Hatzipantelis ES, Pana ZD, Gombakis N, Taparkou A, Tzimouli V, Kleta D, et al. Endothelial activation and inflammation biomarkers in children and adolescents with sickle cell disease. Int J Hematol. 2013;98(2):158–63. 75. Roumenina LT, Rayes J, Lacroix-Desmazes S, Dimitrov JD. Heme: Modulator of Plasma Systems in Hemolytic Diseases. Trends Mol Med [Internet]. 2016;22(3):200– 13. Available from: http://dx.doi.org/10.1016/j.molmed.2016.01.004 76. Adegoke SA, Kuti BP, Omole KO, Smith OS, Oyelami OA, Oyewole O. Paediatrics and International Child Health Acute chest syndrome in sickle cell anaemia : higher serum levels of interleukin-8 and highly sensitive C-reactive proteins are associated with impaired lung function. Paediatr Int Child Health [Internet]. 2018;00(00):1–7. Available from: https://doi.org/10.1080/20469047.2018.1519988 77. Alagbe AE, Olaniyi JA, Aworanti OW. Adult Sickle Cell Anaemia Patients in Bone Pain Crisis have Elevated Pro-Inflammatoru Cytokines. Mediterr J Hematol Infect Dis. 2018;10(2018017):1–9. 78. Asare K, Gee BE, Stiles JK, Wilson NO, Driss A, Quarshie A, et al. Plasma interleukin-1β concentration is associated with stroke in sickle cell disease. Cytokine [Internet]. 2010;49(1):39–44. Available from: http://dx.doi.org/10.1016/j.cyto.2009.10.002 79. Cajado CS, Cerqueira BA V, Barbosa CG, Lyra IM, Adorno E V, Gonçalves MS. IL-8 e TNF-ALFA: Marcadores Imunológicos da Anemia Falciforme. Gaz Médica Bahia. 2010;80(3):56–61. 80. Hoppe CC. Inflammatory Mediators of Endothelial Injury in Sickle Cell Disease. Hematol Clin N Am [Internet]. 2014;28(2):265–86. Available from: http://dx.doi.org/10.1016/j.hoc.2013.11.006 81. Makis AC, Hatzimichael EC, Bourantas KL. The role of cytokines in sickle cell disease. Ann Hematol. 2000;79(1):407–13. 82. Neto GC de G, Pitombeira M da S. Aspectos moleculares da anemia falciforme. J Bras Patol e Med Lab. 2003;39(1):51–6. 83. Cavalcante JEA, Machado RPG, Laurentino MR, Santos TE de J dos, Bandeira ICJ, Filho PAM, et al. Clinical events and their relation to the tumor necrosis factor-alpha and interleukin-10 genotypes in Sickle-Cell- Anemia patients. Hematol Oncol Stem Cell Ther. 2016;9:14–9. 84. Ibiapina HNS, Costa AG, Sachett JAG, Silva IM, Tarragô AM, Neves JCF, et al. An Immunological Stairway to Severe Tissue Complication Assembly in Bothrops atrox Snakebites. Front Immunol. 2019;10(1882):1–12. 85. Pathare A, Kindi SAL, Daar S, Dennison D. Cytokines in Sickle Cell Disease. Hematology. 2003;8(5):329–37. 86. Vilas-boas W, Cerqueira BAV, Figueiredo CVB, Santiago RP, Guarda CC da, Pitanga TN, et al. Association of homocysteine and inflammatory-related molecules in sickle cell anemia. Hematology. 2015;1–6. 87. Silva RR da, Pereira MC, Rêgo MJBM, Hatzlhofer BLD, Araújo A da S, Bezerra MAC, et al. Cytokine Evaluation of Th17 related cytokines associated with clinical and laboratorial parameters in sickle cell anemia patients with leg ulcers. Cytokine [Internet]. 2014;65(2):143–7. Available from: http://dx.doi.org/10.1016/j.cyto.2013.11.012 88. Veiga PC, Schroth RJ, Guedes R, Freire SM, Nogueira-Filho G. Serum cytokine profile among Brazilian children of African descent with periodontal inflammation and sickle cell anaemia. Arch Oral Biol [Internet]. 2013;58(5):505–10. Available from: 70 http://dx.doi.org/10.1016/j.archoralbio.2012.11.006 89. Villagra J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood. 2007;110(6):2166–73. 90. Eklund CM. PROINFLAMMATORY CYTOKINES IN CRP BASELINE REGULATION. Adv i Clin Chem. 2009;48(09):111–36. 91. Damanhouri GA, Jarullah J, Marouf S, Hindawi SI, Mushtaq G, Kamal MA. Clinical biomarkers in sickle cell disease. Saudi J Biol Sci [Internet]. 2015;22(1):24–31. Available from: http://dx.doi.org/10.1016/j.sjbs.2014.09.005 92. Hibbert JM, Hsu LL, Bhathena SAMJ, Irune I, Sarfo B, Creary MS, et al. Proinflammatory Cytokines and the Hypermetabolism of Children with Sickle Cell Disease. Exp Biol Med. 2004;230(1):68–74. 93. Lanaro C, Franco-Penteado CF, Albuqueque DM, Saad STO, Conran N, Costa FF. Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol. 2009;85:235–42. 94. Pitanga TN, Oliveira RR, Zanette DL, Guarda CC, Santiago RP, Santana SS, et al. Sickle red cells as danger signals on proinflammatory gene expression, leukotriene B4 and interleukin-1 beta production in peripheral blood mononuclear cell. Cytokine [Internet]. 2016;83(1):75–84. Available from: http://dx.doi.org/10.1016/j.cyto.2016.03.016 95. Safaya S, Steinberg MH, Klings ES. Monocytes from sickle cell disease patients induce differential pulmonary endothelial gene expression via activation of NF-kB signaling pathway. Mol Immunol [Internet]. 2012;50:117–23. Available from: http://dx.doi.org/10.1016/j.molimm.2011.12.012pt_BR
dc.publisher.initialsUEApt_BR
Aparece nas coleções:DISSERTAÇÃO - PPCAH Programa de Pós-Graduação em Ciências Aplicadas à Hematologia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Avaliação do perfil de biomarcadores imunológicos no perfil clínico de pacientes com anemia falciforme.pdf7,58 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.