UNIVERSIDADE DO ESTADO DO A M A Z O N A S

UNIVERSIDADE DO ESTADO DO AMAZONAS

FUNDAÇÃO HOSPITALAR DE HEMATOLOGIA E HEMOTERAPIA DO

AMAZONAS

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS APLICADAS À HEMATOLOGIA

ESTUDO DAS HEMOGLOBINOPATIAS ESTRUTURAIS EM RECÉM-NASCIDOS DE UMA MATERNIDADE PÚBLICA DE MANAUS-AMAZONAS

ROBERTA DA SILVA BRITO

MANAUS

2016

ROBERTA DA SILVA BRITO

ESTUDO DAS HEMOGLOBINOPATIAS ESTRUTURAIS EM RECÉM-NASCIDOS DE UMA MATERNIDADE PÚBLICA DE MANAUS-AMAZONAS

Dissertação apresentada ao programa de Pós-Graduação em Hematologia da Universidade do Estado do Amazonas, em convênio com a Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, para obtenção do grau de *Mestre em Ciências Aplicadas à Hematologia*.

Orientador: Prof. Dr.José Pereira de Moura Neto

MANAUS

2016

Ficha Catalográfica elaborada por Ana Cristina das Chagas Sena

Bibliotecária CRB 11/348 – Fundação Hemoam

B235e Brito, Roberta da Silva

Estudo de Hemoglobinopatias Estruturais em recém-nascidos de uma maternidade pública de Manaus-Amazonas. /Roberta da Silva Brito. Manaus: UEA/FHEMOAM 2016.

132p. Ilust.

Dissertação (Mestrado em Ciências Aplicadas à Hematologia) - Universidade Estadual do Amazonas e Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas. Escola de Ciências da Saúde (ESA)

Orientador: Prof. Dr. José Pereira de Moura Neto

1. Hemoglobinopatias Estruturais 2. Recém-Nascidos 3. Manaus

CDU: 612.111

FOLHA DE JULGAMENTO

ESTUDO DAS HEMOGLOBINOPATIAS ESTRUTURAIS EM RECÉM-NASCIDOS DE UMA MATERNIDADE PÚBLICA DE MANAUS-AMAZONAS

ROBERTA DA SILVA BRITO

Banca Examinadora:

Prof. Dr. Doutor José Pereira de Moura Neto

Universidade Federal do Amazonas (UFAM) (Presidente)

Prof. Dr. Doutor Antônio Ruffino Netto

Universidade de São Paulo (USP) (Membro)

Prof. Dr. Francisco Erivaldo Vidal Barros

Universidade Federal do Amazonas (UFAM) (Membro)

DEDICATÓRIA

Aos meus pais, Irio Lacerda Luz (in memorian) e Lena Vânia da Silva Brito (in memorian)

"A vida é apenas um sonho, em breve acordaremos. "Santa Teresinha

AGRADECIMENTOS

- ♦ A Deus, pois sem Ele, nada podemos fazer.
- ◆ Ao Profº. José Pereira de Moura Neto pela paciência, dedicação profissional e científica, e assim incentivou-me na realização deste trabalho.
- Às Dras. Lecita Marreira e Lilliam Wallace e todas as colaboradoras do Laboratório de Triagem Neonatal da Fundação Hemoam pela colaboração neste estudo.
- → À Dra. Regina Neves Normando, Gerente do Laboratório da Fundação de apoio
 ao Hemoam Sangue Nativo, pela paciência e colaboração neste trabalho e a
 todos os colaboradores do Laboratório da Fundação Sangue Nativo, em especial
 ao Ulisses Souza e Hozires Guedes.
- À Direção do Instituto da Mulher Dona Lindu nas pessoas dos Drs. Agnaldo Costa e Paulo Kanawatti que proporcionaram os meios para que o trabalho fosse realizado naquela Unidade.
- Ao Dr. Daniel Castro, gerente do Banco de Sangue, que não poupou esforços para a realização deste estudo e a todos os plantonistas do Banco de Sangue que reservaram as amostras de sangue de cordão;
- A Dra. Maria Gracimar Fecury Gama, gerente da Enfermagem e a todo o Corpo de Enfermagem que diuturnamente disponibilizaram as amostras de sangue de cordão e, com muita atenção, atendiam as nossas solicitações.
- ◆ Ao Prof. Dr. Emerson Lima, coordenador do Laboratório de Bioquímica da Faculdade de Farmácia da Universidade Federal do Amazonas, pelo apoio na realização deste trabalho, bem como do colaborador Leonard;
- ◆ Aos colegas do Núcleo Avançado de Pesquisas do Instituto de Biologia do Exército-IPIBEX, Tenentes Tiago Bacha, Josimara e Holanda, no apoio necessário para a realização deste trabalho.

- À Coordenação do Mestrado em Ciências Aplicadas à Hematologia, Dr. Nelson Abrahim Fraiji e Dra. Dagmar Kieslich pelo apoio indispensável na conclusão deste trabalho.
- ♦ À Universidade do Estado do Amazonas pelo Programa de Pós-Graduação de Excelência.
- ◆ Aos professores do Mestrado em Ciências Aplicadas à Hematologia pelos conhecimentos repassados.
- Ao Prof. Dr. Antônio Ruffino Netto, por toda paciência e dedicação dispensada a este Estudo.
- ◆ Ao corpo administrativo do Mestrado em Ciências Aplicadas à Hematologia, em especial a Sra.Wilmara Silva, por toda atenção dedicada.
- À Fundação de Amparo à Pesquisa do Amazonas por apoiar no financiamento deste estudo.
- ♦ À Bioclin, através do Projeto Brasil Escola, pelo fornecimento dos reagentes destinado às dosagens bioquímicas necessárias para a realização do trabalho.
- ◆ Aos alunos de PIBIC da Faculdade de Farmácia da Universidade Federal do Amazonas que contribuíram para a realização deste trabalho.
- À Dra. Márcia Poinho Encarnação de Morais, gerente do Laboratório Distrital Sul-LDS, por todo apoio e compreensão.
- ♦ Ao meu namorado, Murilo José Braga, por todo otimismo e força repassados.

DECLARAÇÃO DAS AGÊNCIAS FINANCIADORAS

O Projeto foi submetido e aprovado no Programa de Pesquisa para o PPSUS no edital PPSUS de nº 001/2013, Decisão 287 de 2/12/2013. Este projeto faz parte do "Estudo das Hemoglobinopatias Estruturais e de Síntese na Região Metropolitana de Manaus".

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) apoiou este projeto de pesquisa, através da concessão de bolsa de estudos, durante os dois anos de sua execução.

RESUMO

Introdução: O diagnóstico precoce de hemoglobinas variantes reduz complicações clínicas frequentes encontradas em recém-nascidos (RNS) como icterícia e anemia severa. Objetivo: Estimamos a prevalência de hemoglobinopatias estruturais em recém-nascidos de uma Maternidade pública da cidade de Manaus-AM. Materiais e Métodos: Nosso modelo de estudo foi descritivo do tipo inquérito envolvendo 825 amostras de recém-nascidos e suas respectivas mães do Instituto da Mulher Dona Lindu (IMDL) no período de março de 2014 a janeiro de 2015. As amostras dos RNS foram coletadas do sangue de cordão umbilical, enquanto das mães por punção venosa. A triagem para as hemoglobinopatias estruturais foi realizada apenas nos RNS pela técnica de Cromatografia Líquida de Alta performance (HPLC). Resultados: Foram observadas 22 (2,7%) amostras com hemoglobinas variantes, sendo 16 FAS (2%) e seis (06) FAD (0,7%). A faixa etária das gestantes foi de 23 anos com 80% dos partos a termo e 19,4% prematuros. A primiparidade foi de 45,9% e o pré-natal foi realizado em 88% das gestantes. Àquelas que não realizaram pré-natal apresentaram 31% maior risco para prematuridade. As principais queixas clínicas nas gestantes foram Doença Hipertensiva Específica da Gravidez (DHEG) (5,1%) e diabetes gestacional (3,4%). A anemia na família foi reportada em 75 (9,15%) com predomínio nos irmãos e mães das gestantes. A média dos níveis de hemoglobinas nas gestantes foi de 12,3 g/dl considerada normal. Os recém-nascidos apresentaram distribuição de 53% para o sexo masculino com predomínio da raça parda (81,2%), seguida da branca (16,4%). A nutrição administrada em 80,3% dos RNs foi leite materno, seguida de fórmula láctea (6,4%), parenteral (2,8%) e enteral (2,4%). A média do peso dos RNs com perfil FAA foi de 3257,15g, FAS 3168,76g e FAD de 3433,37g. Correlações significativas nos RNS para volume plaquetário médio (VPM) maior (p=0,010) e ferro sérico (p=0,025) diminuído quando de parto normal. Diminuições no número absoluto dos segmentados neutrófilos e capacidade de ligação do ferro sérico (p=0,042) em RNs quando estes foram prematuros. Quando a nutrição foi enteral, houve redução do número absoluto de linfócitos (p<0,001) e neutrófilos segmentados (p=0,04). Quando os RNs necessitaram de internação intensiva em utineonatal, estes apresentaram valores reduzidos de hematócrito (HT), hemoglobina (Hb) e hemácias (RBC) (p<0,001). Número reduzido de hemácias (p=0,004) e níveis de hemoglobina (0,016) menores que 13,5g/dL (p=0,04) foram demonstrados na raça negra. Não foram encontradas A associação entre dados hematológicos e perfil de hemoglobina não apresentou diferenças estatísticas, porém valores aumentados da Uréia (p=0,045) foram verificados entre os perfis FAS e FAD, quando comparados ao FAA. Recém-nascidos com peso menor que 2500g foram associados s mães que tiveram DHEG (p=0,029). Baixo peso ao nascer e gestantes que não realizaram pré-natal foram correlacionados significativamente prematuridade, p<0,001 e p=0,046, respectivamente. Abortos espontâneos foram associados significativamente com aumento das bilirrubinas (p<0,001) e LDL (p=0,040). Conclusão: Concluímos que apesar da ausência de correlações positivas entre as hemoglobinas variantes encontradas (FAS e FAD) com os dados hematológicos, bioquímicos e as manifestações clínicas investigadas, estudos relativos a identificação de hemoglobinas variantes bem como a talassemia alfa ao acompanhamento pré-natal das gestantes e seus respectivos RNs, fazem-se necessários na nossa população, uma vez que a real incidência de hemoglobinopatias estruturais e de síntese ainda não apresentam dados reais em nossa população. Enfatizamos que estudos complementares devem ser seguidos visando sempre a possibilidade de serem encontrados descendentes em gestantes e RNS homozigotos para estas alterações, aumentando com isso o risco de complicações clínicas graves nas gestações e nos recém-nascidos. Concluímos que a realização do presente estudo e a inclusão de técnicas moleculares contribuiria para confirmar possíveis interações com talassemias sendo assim possível o conhecimento da real prevalência destas doenças hematológicas, contribuindo para o seu diagnóstico precoce e acompanhamento clínico durante o pré-natal.

Palavras-chave: Hemoglobinopatias Estruturais. Recém-nascidos. Manaus

ABSTRACT

Early diagnosis of hemoglobin's variants reduces clinical complications frequently found in neonates (RNS) such as jaundice and severe anemia. Objective: To estimate the prevalence of structural hemoglobinopathies in newboRNs from a public maternity of the city of Manaus-AM. Our study design was descriptive type survey involving 825 samples of newboRNs and their mothers from the Women's Institute Dona Lindu (MDLI) from March 2014 to January 2015. Materials and Methods: Samples were collected from RNS umbilical cord blood, while mothers by venipuncture. Screening for structural hemoglobinopathies was performed only in the RNS technique High Performance Liquid Chromatography (HPLC). Results: We observed 22 (2.7%) samples with hemoglobin variants, 16 FAS (2%) and six (06) FAD (0.7%). The age of patients was 23 years with 80% of term deliveries and 19.4% premature. Primiparity was 45.9% and the prenatal care was performed in 88% of pregnant women. Those who did not undergo prenatal showed 31% increased risk for preterm birth. The main clinical symptoms in pregnant women were Hypertensive Disease Specific Pregnancy (HDP) (5.1%) and gestational diabetes (3.4%). Anemia in the family was reported in 75 (9.15%) with a predominance in the brothers and mothers of pregnant women. The mean levels of hemoglobin in pregnant women were 12.3 g / dl considered normal. NewboRNs showed distribution of 53% for males with predominance of mulattos (81.2%), followed by white (16.4%). Nutrition administered in 80.3% of newboRNs was breast milk, infant formula then (6.4%), parenteral (2.8%) and enteral (2.4%). The average weight of newboRNs with FAA profile was 3257,15g, FAS 3168,76g and FAD 3433,37g. Significant correlations in RNS to mean platelet volume (MPV) higher (p = 0.010) and serum iron (p = 0.025) decreased when vaginally. Decreases in the absolute number of neutrophils and segmented binding capacity of serum iron (p = 0.042) in newboRNs when they were premature. When enteral nutrition was, a reduction in the absolute number of lymphocytes (p <0.001), segmented neutrophils (p = 0.04). When RNs needed intensive hospital in utineonatal, these showed reduced hematocrit values (HT), hemoglobin (Hb) and red blood cells (RBC) (p <0.001). Reduced number of red blood cells (p = 0.004) and hemoglobin (0.016) lower than 13.5g / dL (p = 0.04) were demonstrated in the black race. Not association was between hematological data and hemoglobin profile did not show statistical differences, however increased levels of urea (p = 0.045) were demonstrated between the FAS and FAD profiles when compared to the FAA. NewboRNs weighing less than 2500g were associated s mothers who had preeclampsia (p. = 0.029). Low birth weight and pregnant women who did not undergo prenatal were significantly correlated with prematurity, p <0.001 and p = 0.046, respectively. miscarriages were significantly associated with elevated bilirubin (p <0.001) and LDL (p = 0.040). Conclusion: We conclude that despite the absence of positive correlations between the variants found hemoglobins (FAS and FAD) with haematological, biochemical data and clinical manifestations investigated, studies on the identification of hemoglobin variants and alpha thalassemia prenatal monitoring pregnant women and their newboRNs are made necessary in our population, since the real impact of structural hemoglobinopathies and synthesis have not yet actual data in our population. We emphasize that further studies should be followed aiming to the possibility of being found descendants in pregnant women and RNS homozygous for these changes, thus increasing the risk of serious medical complications in pregnancies and newboRNs. We conclude that the realization of this study and the inclusion of molecular techniques help to confirm possible interactions with thalassemia therefore possible knowledge of the real prevalence of these hematologic diseases, contributing to the early diagnosis and clinical monitoring during the prenatal.

Keywords: Structural Hemoglobinopathies. Newborns. Manaus.

LISTA DE FIGURAS

Figura 1 - Incidência do Traço Falciforme (HbAS) no Brasil	26
Figura 2 - Cromatogramas para HbS e HbD comuns de HPLC	31
Figura 3 - Fluxograma do estudo	.39

LISTA DE TABELAS

Tabela 1 – Frequência de Partos por Idade Gestacional do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201543
Tabela 2 – Frequência de gestações em puérperas do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201543
Tabela 3 – Frequência de anemia em família de gestantes do Instituto da Mulher Dona Lindu. Manaus - Amazonas-Março/2014 a Janeiro/201544
Tabela 4 – Análise da Idade Gestacional e os dados hematológicos e bioquímicos das gestantes atendidas no Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014a Janeiro/201545
Tabela 5 – Análise dos dados hematológicos em partos prematuros de gestantes do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201546
Tabela 6 – Análise dos dados bioquímicos em partos prematuros de gestantes do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201547
Tabela 7 – Análise entre Abortos Espontâneos e os dados hematológicos das gestantes atendidas no Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201548
Tabela 8 - Análise entre Abortos Espontâneos e os dados bioquímicos das gestantes atendidas no Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201549
Tabela 9 - Análise entre Doença Hipertensiva Específica da Gravidez e os dados hematológicos das gestantes atendidas no Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015
Tabela 10 - Análise entre Doença Hipertensiva Específica da Gravidez e os dados bioquímicos das gestantes atendidas no Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 Janeiro/2015
Tabela 11 - Análise dos dados hematológicos do tipo de parto de gestantes atendidas no Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015

	oquímicos do tipo de parto de gestantes do Instituto mazonas-Março/2014 a Janeiro/201555
Instituto da Mulher Dona	matológicos em partos prematuros de gestantes do a Lindu. Manaus-Amazonas-Março/2014 a 56
Instituto da Mulher Dona	ioquímicos em partos prematuros de gestantes do a Lindu. Manaus-Amazonas-Março/2014 a 57
Instituto da Mulher Dona	nematológicos em gestantes quanto ao gênero do a Lindu. Manaus-Amazonas-Março/2014 a 59
Instituto da Mulher Dona Lind	bioquímicos em gestantes quanto ao gênero do u. Manaus-Amazonas-Março/2014 a Amazonas- 60
Instituto da Mulher Dona	nematológicos em gestantes quanto à diabetes do a Lindu. Manaus-Amazonas-Março/2014 a 61
Instituto da Mulher Dona	bioquímicos em gestantes quanto à diabetes do a Lindu. Manaus-Amazonas-Março/2014 a 63
Instituto da Mulher Dona	ematológicos quanto ao pré-natal em gestantes do a Lindu. Manaus-Amazonas-Março/2014 a 64
Instituto da Mulher Dona	bioquímicos quanto ao pré-natal em gestantes do a Lindu. Manaus-Amazonas-Março/2014 a 65
atendidas no Instituto da Mulhe	o de nutrição e dados hematológicos das gestantes er Dona Lindu. Manaus-Amazonas-Março/2014 a 66
atendidas no Instituto da Mulhe	oo de nutrição e dados bioquímicos das gestantes er Dona Lindu. Manaus-Amazonas-Março/2014 a 68
-	classificação racial e dados hematológicos entre Mulher Dona Lindu. Manaus-Amazonas-Março/2014

Tabela 24 – Distribuição pela classificação racial e dados bioquímicos entre gestantes e RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201571
Tabela 25 – Distribuição dos tipos de hemoglobinas em Recém-Nascidos do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201573
Tabela 26 - Análise dos dados hematológicos de RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a a Janeiro/201574
Tabela 27 - Análise dos dados bioquímicos de RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201576
Tabela 28 - Análise dos dados hematológicos do tipo de parto e RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201577
Tabela 29 - Análise dos dados bioquímicos do tipo de parto e RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201579
Tabela 30 - Análise dos dados hematológicos em partos prematuros de RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201580
Tabela 31 - Análise dos dados bioquímicos em partos prematuros de RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201582
Tabela 32 - Análise dos dados hematológicos quanto ao gênero de RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201585
Tabela 33 - Análise dos dados bioquímicos quanto ao gênero de RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a a Janeiro/201586
Tabela 34 - Análise dos dados hematológicos de RNs quanto à diabetes do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015 88
Tabela 35 - Análise dos dados bioquímicos de RNs quanto à diabetes do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a a Janeiro/201589
Tabela 36 - Análise dos dados hematológicos quanto ao pré-natal em RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201591

Tabela 37 - Análise dos dados bioquímicos quanto ao pré-natal em RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201592
Tabela 38 - Análise dos dados hematológicos quanto à UTI em RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201593
Tabela 39- Análise dos dados bioquímicos quanto à UTI em RNs do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201595
Tabela 40- Distribuição pelo tipo de nutrição e dados hematológicos dos recémnascidos do Instituto da Mulher Dona Lindu.Manaus-Amazonas-Março/2014 a Janeiro/201596
Tabela 41- Distribuição pelo tipo de nutrição e dados bioquímicos dos recémnascidos do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015
Tabela 42- Distribuição pela classificação racial e dados hematológicos em recémnascidos do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/201599
Tabela 43- Distribuição pela classificação racial e dados bioquímicos em recémnascidos do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015
Tabela 44- Distribuição pelo perfil hemoglobínico e dados hematológicos em recémnascidos do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015
Tabela 45- Distribuição pelo perfil hemoglobínico e dados bioquímicos em recémnascidos do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015
Tabela 46- Análises entre dados clínicos das gestantes e recém-nascidos do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015
Tabela 47- Análises entre classificação racial e valores de hemoglobina dos recémnascidos do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015
Tabela 48- Análises entre prematuridade e pré-natal das gestantes do Instituto da Mulher Dona Lindu. Manaus-Amazonas-Março/2014 a Janeiro/2015

LISTA DE ABREVIATURAS, SÍMBOLOS E UNIDADES DE MEDIDA

α Alfa

α+ Alfa mais

 α^0 Alfa zero

α –Tal Talassemia Alfa

AF Anemia Falciforme

ANOVA Análise de Variância

APAE Associação de Pais e Amigos dos Excepcionais

AVC Acidente Vascular Cerebral

β Beta

βA Alelo β normal

βs Alelo β S

β+ Beta mais

β⁰ Beta zero

βtal Talassemia β

BD Bilirrubina Direta

BT Bilirrubina Total

BI Bilirrubina Indireta

CO₂ Dióxido de Carbono

CHCM Concentração da Hemoglobina Corpuscular Média

δ Delta

DHL Desidrogenase Láctica

DNA Ácido desoxirribonucleico

EDTA Ácido etileno de aminotetracético di-sódico

ε Épsilon

FIE Focalização isoelétrica

FC Fibrose Cística

FCF Faculdade de Ciências Farmacêuticas

FHEMOAM Fundação de Hematologia e Hemoterapia do Amazonas

fL Fentolitro

g/dl Gramas por decilitro

GGT Gama Glutamil Transferase

γ Gama

Hb Hemoglobina

Hb A Hemoglobina A

Hb A₂ Hemoglobina A2

Hb AC Heterozigoto: Hemoglobinas A e C

Hb AS Heterozigoto: Hemoglobinas A e S

Hb AD Heterozigoto:Hemoglobinas A e D

Hb AE Heterozigoto:Hemoglobinas A e E

Hb Bart's Hemoglobina Bart's

Hb C Hemoglobina variante C

Hb CC Hemoglobina C homozigótica

Hb CS Hemoglobina Constant Spring

HCM Hemoglobina Corpuscular Média

Hb D Hemoglobina variante D

Hm Hemácias

Hb E Hemoglobina variante E

Hb F Hemoglobina Fetal

Hb Gower 1 Hemoglobina Gower 1

Hb Gower 2 Hemoglobina Gower 2

Hb H Hemoglobina H

Hb Portland Hemoglobina Portland

Hb S Hemoglobina variante S

HbSS Homozigose da hemoglobina S

Hb S/C Hemoglobina S/Hemoglobina C

Hb S/D Hemoglobina S/Hemoglobina D

HbS/tal β + Hemoglobina S/Talassemia β mais

HbS/tal β 0 Hemoglobina S/Talassemia β zero

HC Hemoglobinopatias

HPLC Cromatografia Líquida de Alta Performance

Ht Hematócrito

IBGE Instituto Brasileiro de Geografia e Estatística

IMDL Instituto da Mulher Dona Lindu

ITU Infecção do trato urinário

mcg/dL Micrograma por decilitro

mg/dL Miligramas por decilitro

OMS Organização Mundial de Saúde

O₂ Oxigênio

Ψ Pseudo

Pg Picograma

PHHF Persistência hereditária de hemoglobina fetal

PNTN Programa Nacional de Triagem Neonatal

Portaria-MS Portaria do Ministério da Saúde

PKU Fenilcetonúria

RDW Amplitude de distribuição dos eritrócitos

RN Recém-nascido

RNA Ácido Ribonucléico

TCLE Termo de Consentimento Livre e Esclarecido

μl Microlitro

UFAM Universidade Federal do Amazonas

UFBA Universidade Federal da Bahia

VCM Volume Corpuscular Médio

VPM Volume Plaquetário Médio

ζ Zeta

ÍNDICE

1.	RESUMO	x
2.	SUMMARY	_xxiv
3.	INTRODUÇÃO	24
	3.1 Epidemiologia	25
	3.2 As Hemoglobinopatias Estruturais	26
	3.3 Manifestações Clínicas nas Hemoglobinopatias Estruturais _	28
	3.4 Incidência das Hemoglobinopatias Estruturais em Recém- Nascidos	29
	3.5 Diagnóstico Laboratorial das Hemoglobinopatias Estruturais Recém-Nascidos	
4. (OBJETIVOS	33
4.1	Objetivo Geral	33
4.2	2 Objetivos Específicos	33
5. I	MATERIAL E MÉTODOS	34
5.1	Modelo de Estudo	34
5.2	2 População de Referência	34
5.3	B População de Estudo	34
5.4	4 Critérios de Inclusão	34
5.5	5 Critérios de Exclusão	34
5.6	S Participantes	35
	5.6.1 Tamanho Amostral	35
	5.6.2 Exames realizados	35
5.6	S.3 Procedimentos	35
5.6	6.3.1 Análises Hematológicas	35
5.6	6.3.2 Análises Bioquimicas	36
5.6	6.3.3 Análise de Hemoglobinas	36

5.6.3.4 Análise Clínica	37
5.7 Análise Estatística	38
5.8 Fluxograma do Estudo	39
5.9 Comitê de Ética	40
5.10 Financiamento	41
6. RESULTADOS	42
6.1 Características clínicas das Gestantes do Instituto da Mulher De Lindu	ona 42
6.2.Associação entre a Idade Gestacional e os dados hematológicos das gestantes do IMDL	45
6.3. Associação entre a Prematuridade e os dados hematológicos e bioquímicos das gestantes do IMDL	46
6.4 Associação entre Abortos Espontâneos e os dados hematológicos e bioquímicos das gestantes do IMDL	48
6.5 Associação entre Doença Hipertensiva Específica da Gravidez e os dados hematológicos e bioquímicos das gestantes do IMDL	51
6.6 Associação entre tipo de parto e os dados hematológicos e bioquímico das gestantes do IMDL	os . 53
6.7 Associação entre parto prematuro e os dados hematológicos e bioquímicos das gestantes do IMDL	56
6.8 Associação entre anemia na família e os dados hematológicos e bioquímicos das gestantes do IMDL	58
6.9 Associação entre diabetes gestacional e os dados hematológicos e bioquímicos das gestantes do IMDL	61
6.10 Associação entre o pré-natal e dados hematológicos e bioquímicos d gestantes do IMDL	las . 64
6.11 Associação de dados hematológicos e bioquímicos entre gestantes e	
6.12. Associação de dados hematológicos e bioquímicos entre gestantes RNs quanto à classificação racial do ao tipo de nutrição do IMDL	e 69

6.13 Características clínicas dos Recém-Nascidos do Instituto da Mulher Dona Lindu
6.14 Associação entre os dados hematológicos e bioquímicos dos RNs e a DHEG do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/201574
6.15 Associação entre os dados hematológicos e bioquímicos dos RNs e o tipo de parto do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/201577
6.16 . Associação entre os dados hematológicos e bioquímicos dos RNs e parto prematuro do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/201580
6.17 Associação entre os dados hematológicos e bioquímicos dos RNs e a anemia na família do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/201583
6.18 Associação entre os dados hematológicos e bioquímicos dos RNs quanto ao gênero do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/201584
6.19 Associação entre os dados hematológicos e bioquímicos e a diabetes dos RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015 87
6.20 Associação entre os dados hematológicos e bioquímicos dos RNs e o pré-natal do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/201590
6.21 Associação entre os dados hematológicos e bioquímicos dos RNs quanto a UTI do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/201593
6.22 Associação entre os dados hematológicos e bioquímicos dos RNs quanto ao tipo de nutrição do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015 96
6.23 Associação entre os dados hematológicos e bioquímicos dos RNs quanto à classificação racial do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/201599
6.24 Associação entre os dados hematológicos e bioquímicos dos RNs quanto ao perfil hemoglobínico do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Marco/2014 a Janeiro/2015.

8.25 Associação entre as principais características clínicas das gestantes e	
recém-nascidos do Instituto da Mulher Dona Lindu	104
7 DISCUSSÃO	108
8 CONCLUSÃO	_ 117
9. REFERÊNCIAS BIBLIOGRÁFICAS	119
10 APÊNDICES	132
APÊNDICE 1	133
PARECER DO COMITÊ DE ÉTICA EM PESQUISA	133
APÊNDICE 2	134
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO (TCLE) PARA MÃES DE 18 ANOS	
APÊNDICE 3	136
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO(TCLE) PARA MENOR DE 18 ANOS - RECÉM-NASCIDOS	_ 136
APÊNDICE 4	_ 141
QUESTIONÁRIO - GESTANTES	141
APÊNDICE 5	142
QUESTIONÁRIO - RECÉM-NASCIDOS	142
APÊNDICE 6	143
ORÇAMENTO	143
APÊNDICE 7	146
EQUIPE CIENTÍFICA DE APOIO AO PROJETO	146
APÊNDICE 8	147
PROTOCOLO PARA DETECÇÃO DE HEMOGLOBINAS VARIANTES - VARIANT SICKLE CELL SHORT PROGRAM	
APÊNDICE 9	_ 149
VALOR DE REFERÊNCIA EM SANGUE DE CORDÃO UMBILICAL	

INDICES HEMATIMÉTRICOS	149	
NDICES REMATIMETRICOS	149	

3. INTRODUÇÃO

As hemoglobinas podem apresentar alterações em sua estrutura ou em sua produção denominadas hemoglobinopatias, caracterizadas principalmente por alterações estruturais e na síntese das cadeias de globina que podem ser do tipo alfa ou não-alfa (CARVALHO, 2010).

As hemoglobinopatias compreendem as talassemias, hemoglobinas instáveis e hemoglobinas variantes com alterações funcionais. A maioria das variantes estruturais da hemoglobina é consequência de mutações pontuais ocorrem principalmente nos códons dos genes da globina, resultando na substituição de um único aminoácido (CHARACHE, 1990).

Estudos populacionais permitem o diagnóstico de heterozigotos e o aconselhamento genético fornece subsídios para que os indivíduos decidam sobre a sua prole, além da melhoria da qualidade de vida dos doentes. Pela necessidade de um controle de qualidade e padronização das técnicas da triagem neonatal, foi editada a portaria nº 822 de 6 de junho de 2001 pelo Ministério da Saúde, com o aumento inclusive do número de exames cobertos pelo SUS (GARANITO, 2008; SILVA, 2005).

Esta portaria determinou a obrigatoriedade do Programa Nacional de Triagem Neonatal em todo o país, tendo como objetivo o desenvolvimento de ações de triagem neonatal, diagnóstico, acompanhamento e tratamento das doenças congênitas (BRASIL, 2001).

O teste do pezinho é o nome popular atribuído a esse programa de diagnóstico precoce. No Brasil, foi introduzido na década de 70 e incorporado ao SUS em 1992. A primeira doença a ser triada foi a fenilcetonúria a partir de um trabalho pioneiro da APAE/SP (Associação de Pais e Amigos dos Excepcionais de São Paulo) em 1976 por Benjamin Schmidt.

O Ministério da Saúde habilitou através da Portaria nº 441/SAS/MS, de 11 de outubro de 2001, o Estado do Amazonas na Fase I que prevê a triagem neonatal para fenilcetonúria e hipotireoidismo congênito. Até esta data os casos suspeitos de hemoglobinopatias eram encaminhados para Laboratórios de Referência em outros estados.

A partir de 06 de maio de 2013, através da Portaria 507, o Ministério da Saúde habilitou o Estado do Amazonas na Fase II do Programa Nacional de Triagem

Neonatal que prevê a triagem neonatal, a confirmação diagnóstica, o acompanhamento e o tratamento da fenilcetonúria, hipotireoidismo congênito, Doenças falciformes e outras Hemoglobinopatias.

Estudos envolvendo hemoglobinopatias possuem enorme importância científica e sua aplicação deve ser conhecida em toda prática clínica por possuir impacto social evidente e relevante. O conhecimento das hemoglobinopatias pelo pediatra é fundamental, uma vez que a doença é um problema de saúde pública no nosso país e o pediatra tem importante papel no diagnóstico ao interpretar corretamente o resultado do teste de triagem neonatal.

3.1 Epidemiologia

Segundo a Organização Mundial de Saúde (OMS), as desordens na molécula de hemoglobina atingem aproximadamente 5,5% da população mundial estão presentes em 71% dos 229 países e estima-se que 270 milhões de pessoas carregam genes que determinam a presença de hemoglobinas anormais . Além disso, estima-se que mais de 300 a 400 mil crianças nasçam a cada ano com anemia falciforme ou talassemia grave (WEATHERALL, 2001, BACKES, 2005). Dessas, 3,4% morrem antes de atingir cinco anos de idade e esse percentual aumenta para 6,4% na África (WEATHERALL, 2001).

Além dessas, outras hemoglobinas variantes como a hemoglobina D Punjab, ou Los Angeles, apresenta prevalência elevada na Índia e Oriente Médio. A hemoglobina E, no Sudeste da Ásia (REIS et al., 2004).

Acredita-se que o contínuo processo miscigenatório tenha facilitado a propagação das hemoglobinas anormais. Estudos realizados em diferentes regiões do Brasil mostram que entre as hemoglobinas anormais, as estruturas do tipo HbS e HbC, de origem africana, são as que possuem maior frequência, mostrando a intensa participação do negro na composição populacional brasileira (BONINI et al., 1993; NAOUM, 1997; BACKES et al., 2005).

Apesar de sua prevalência ser maior em pessoas da raça negra, estudos populacionais têm apresentado a crescente presença de Hemoglobina S (HbS) em indivíduos de pele branca.

No Brasil, aproximadamente, duas mil (2000) crianças nascem com anemia falciforme ao ano; 50.000 com traço falciforme e mais de 20.000 com outras hemoglobinas variantes (C, D ou E) (HOPPE, 2013). No Brasil, a prevalência média de heterozigotos AS é de 2%, valor que se eleva para 6 a 10% entre afrodescendentes. A prevalência de heterozigotos AC também é significativa entre estes últimos, com valores entre 1 a 3% (GARANITO et al., 2008).

Estudos realizados em populações brasileiras revelaram que existam no Brasil aproximadamente dez milhões de indivíduos portadores de hemoglobinas variantes e que anualmente nasçam cerca de 3 mil com a forma homozigota (BACKES et al., 2005, YAMAGUCHI, 2007). A figura 1 mostra a incidência do Traço Falciforme no País.

Figura 1- Incidência do traço falciforme (HbAS) no Brasil. Fonte: MURAO, 2007.

3.3 As Hemoglobinopatias Estruturais

As hemoglobinopatias estruturais são decorrentes de mutações envolvendo substituições simples, inserções ou deleções de nucleotídeos podendo consequentemente alterar o aminoácido na proteína. Tais alterações podem comprometer as propriedades físico-químicas, como mudança de cargas elétricas, solubilidade, estabilidade molecular e afinidade por oxigênio, de acordo com o tipo da mutação e na sua localização (FRENETTE & ATWETH, 2007).

Até setembro de 2014, já foram descritas mais de 1200 mutações nos genes das cadeias globínicas alfa e beta da molécula de hemoglobina de acordo com o Banco de Dados de Genes da Globina (http://globin.cse.psu.edu/). A maioria das variantes descritas não causam manifestações clínicas, entretanto, podem estar associadas com relevante fisiopatologia (TORRES et al.,2015).

A hemoglobina S é decorrente da mutação pontual (GAG>GTG) no sexto códon do gene da globina β, com substituição do ácido glutâmico por valina (STEINBERG, 2001; GONÇALVES et al., 2003). Esta mutação favorece a polimerização sob condição de baixo teor de oxigênio (RIBEIRO, 2008).

Os indivíduos heterozigotos AS, AC e AD geralmente são assintomáticos, mas podem ter alguns sintomas clínicos quando em altitudes elevadas e baixa pressão do oxigênio está presente (NAGEL & STEINBERG, 2001a). Do ponto de vista hematológico, as contagens globais e a morfologia do eritrócito são normais. A sobrevida da hemácia é normal, portanto, indivíduos AS não apresentam anemia ou hemólise (SEARJEANT, 1992; SEARS, 1994).

A Hb D é uma hemoglobina variante com mutações em diferentes pontos da globina beta, fatos que determinam pelo menos quatro tipos distintos. A Hb D Punjab ou Los Angeles (β121 Glu→Gln) é o tipo mais comum entre os genótipos e é originada da transversão GAA-CAA no códon 121 do gene da globina beta (ATALAY, 2009; BAHADIR, 2009). HbD foi descrita em 1950, sendo a variante é mais frequente na Índia. Ambos formas heterozigota ou homozigota são clinicamente e hematologicamente normais (ITANO E NEEL,1950; HUISMAN,1998; AKILE et al., 2010).

Em um amplo estudo realizado com aproximadamente 100 mil pessoas de diversas regiões brasileiras, observou-se que os casos de HbD identificados eram do

tipo D Punjab ou Los Angeles, com prevalência média do genótipo Hb AD na proporção de um caso para cinco mil pessoas analisadas (NAOUM, 1997). Embora nem sempre associada à história clínica relevante, HbD-Punjab é uma hemoglobina relativamente comum em todo o mundo, sendo a terceira variante de hemoglobina mais comum no Brasil (TORRES et al., 2015). A associação entre HbS e HbD (SD) pode levar a um quadro de anemia entre moderado a grave. (NAOUM, 1995).

3.3 Manifestações Clínicas nas Hemoglobinopatias Estruturais

Na maioria dos casos heterozigotos, os portadores são assintomáticos. O portador homozigoto, principalmente no estado HbSS ou beta-talassêmicos maior, apresentam no mínimo uma moderada anemia e possuem crises constantes de hemólise (NAOUM, 1984).

Os homozigotos HbSS são denominados portadores da anemia falciforme, estando associada a manifestações clínicas importantes como: aumento da suscetibilidade a infecções; recorrentes episódios de oclusão vascular; retardo no crescimento e desenvolvimento; alterações em diversos órgãos, decorrentes da hemólise contínua e dos fenômenos de vaso-oclusão apresentados durante o curso da doença (ARAÚJO et al., 2004; BUNN & FORGET, 1986; WEATHERALL et al., 2000; STEINBERG, 2009).

Recém-nascidos portadores da anemia falciforme geralmente não apresentam clínica até os seis meses de idade, principalmente devido a elevada concentração de Hb Fetal presente nos eritrócitos. Daí a importância da repetição dos exames até o final do primeiro ano de vida para as hemoglobinas variantes (FERRAZ, 2007).

A crise de sequestro esplênico, que constitui uma complicação aguda em pacientes com anemia falciforme, é mais frequente também nos dois primeiros anos de vida, sempre acompanhada de reticulocitose, diminuição da concentração de hemoglobina, podendo acarretar em colapso circulatório que pode levar ao óbito por anemia e choque hipovolêmico (ARAÚJO et al., 2009; REZENDE et al., 2009). A maioria dos portadores da doença falciforme apresenta níveis crônicos de hemoglobina entre 6 a 9 g/dl (NAOUM, 1997).

O acidente vascular cerebral (AVC) é uma complicação grave associada à mortalidade elevada, principalmente em crianças entre 2 a 5 anos de idade, com redução de sua incidência entre 10 e 19 anos (OHENE-FREEPONG & STEINBERG, 2001; STUART & NAGEL, 2004; FRIEDMAN, 2009).

A incidência de recém-nascidos prematuros e de baixo peso e a mortalidade perinatal não tem sido diferentes entre as gestantes AS e as normais (WHALLEY et al., 1963).

3.4 Incidência das Hemoglobinopatias Estruturais em Recém-Nascidos

O gene β^S apresenta distribuição heterogênea entre os diferentes estados brasileiros. Alves e colaboradores (2000) analisaram 1002 amostras de portadores de HbAS e deste total analisado, 16 (1,59%) amostras de sangue apresentaram a associação entre HbAS e alfa talassemia, sugerindo aos laboratórios de rotina a realização desta associação entre portadores de HbAS com presença de anemia que não a ferropriva.

No estado de Minas Gerais, o programa de triagem neonatal apresentou um caso de HbSS para cada 1591 nascidos vivos (SERJEANT, 2001). O programa de triagem neonatal em Minas Gerais foi considerado um modelo para a América do Sul. Este programa encontrou 3,2% de recém-nascidos triados com traço falciforme, 1,3% heterozigotos para HbC e 0,08% com anemia falciforme.

Em Porto Alegre, Daudt e colaboradores (2002) analisaram 1615 indivíduos e identificaram a presença de HbS em 20 amostras e da HbC em seis. Essas frequências corresponderam a 1,2% de prevalência para o gene S entre recémnascidos e 0,4% para o gene da doença de hemoglobina C.

Brandelise e colaboradores (2004) descreveram a incidência de 0,02% para as doenças falciformes HbSS e HbSC durante o programa de triagem neonatal realizado em Campinas, que envolveu 281884 recém-nascidos.

Em Natal, Rio Grande do Norte, Araújo e colaboradores (2004) encontraram 1,5% de recém-nascidos heterozigotos AS e a incidência de 0,05% portadores da AF. O estado da Bahia apresenta a maior frequência brasileira para a HbS com 7,4% para o genótipo AS (AZEVEDO et al., 1980). Silva e colaboradores (2006) encontraram na triagem neonatal realizada pela APAE (Associação de Pais e

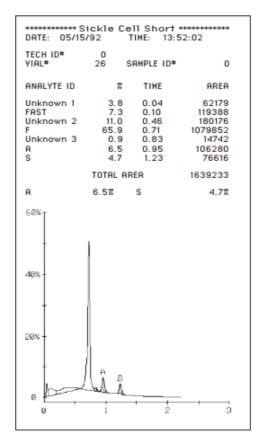
Amigos de Excepcionais), uma criança com Anemia Falciforme a cada 600 nascidos vivos.

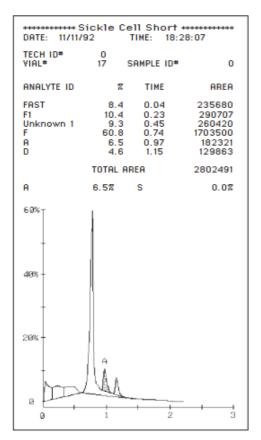
Melo e colaboradores (2007) apresentaram em 3048 amostras de sangue de cordão umbilical de neonatos de São Paulo, 12,57% alterações de hemoglobinas, sendo 1,84% portadores da HbAS, 0,6% com HbCC.

Adorno e colaboradores (2011) analisaram 590 recém-nascidos de uma maternidade pública em Salvador- Bahia e encontraram 57 HbAS, 38 HbAC, 1 HbSS e 5 com a dupla heterozigose HbSC.

3.5. Diagnóstico Laboratorial das Hemoglobinopatias Estruturais em Recém-Nascidos

Para o diagnóstico neonatal de hemoglobinas anormais utiliza-se preferencialmente o sangue de cordão umbilical ou punção plantar. O diagnóstico das hemoglobinopatias é complexo e por isso, os dados clínicos e a herança genética devem ser considerados (SIQUEIRA et al., 2002). Entretanto, exames como hemograma, contagem de reticulócitos e estudo familiar são úteis na diferenciação diagnóstica (FERRAZ, 2007).


O teste de falcização que consiste na pesquisa de drepanócitos com agente redutor de oxigênio (metabissulfito de sódio) e os testes de solubilidade (ditionito de sódio) não se aplicam durante os primeiros meses de vida por induzirem a resultados falso-negativos devido ao aumento da hemoglobina fetal e baixos níveis de hemoglobina S, especialmente nos RNs prematuros. Desta forma, até os seis meses de idade, o teste de solubilidade negativo deve ser interpretado com cautela (ZANATTA, 2009).


Inicialmente, os programas de triagem neonatal utilizavam dois procedimentos eletroforéticos associados: a eletroforese em acetato de celulose em ph alcalino seguido da eletroforese em ph ácido. Esta associação é mais trabalhosa para a realização em larga escala e apresenta menor sensibilidade e especificidade (FERRAZ, 2007).

O HPLC possui características importantes para amplos programas de prevenção de hemoglobinopatias, como a rapidez nas análises, utilizando pequena

quantidade de amostra, análise de um grande número de amostras ao mesmo tempo e fornecendo resultados semiquantitativos.

A técnica de HPLC permite a quantificação de HbA₂, HbF, HbA, HbS, HbC e triagem para outras Hb variantes (ONDEI, 2007, PROYTCHEVA, 2011). A figura 2 mostra os Cromatogramas para Hbs e HbD comumente encontrados em análise amostras de RNs no equipamento Variant II da Bio-Rad.

Figura 2- Cromatogramas para HbS e HbD pela técnica de HPLC Fonte: Biorad, 2016.

A definição do provável diagnóstico laboratorial das doenças falciformes, com base na análise do eritrograma, morfologia eritrocitária, pode ser completada pelas avaliações quantitativas das frações das hemoglobinas e pelo perfil cromatográfico. A combinação desses resultados laboratoriais define condutas metodológicas prémoleculares e afastam as interações com hemoglobinas similares à HbS, como são os casos da HbD, Hb Korle-Bu, HbG (ROSEFF, 2009; VERDUZCO & NATHAN, 2009)

A confirmação diagnóstica após seis meses de idade permite a realização do aconselhamento genético, com atuação de equipe multiprofissional, auxiliando no acompanhamento de cada caso. É fundamental que as famílias saibam que a maior parte das doenças triadas no Teste do Pezinho é assintomática no período neonatal e que, portanto, não devem demorar em procurar a confirmação diagnóstica dos casos suspeitos (SIQUEIRA et al., 2002; FERRAZ, 2007; GARANITO, 2008).

4. OBJETIVOS

GERAL

 Estimar a prevalência de hemoglobinopatias estruturais em Recém-nascidos de uma Maternidade Pública de Manaus-Amazonas.

ESPECÍFICOS

- Classificar as hemoglobinopatias estruturais em amostras de recémnascidos do Instituto da Mulher Dona Lindu-IMDL;
- Identificar as hemoglobinopatias estruturais dos recém-nascidos e associálos aos eventos clínicos, aos parâmetros hematológicos e bioquímicos;
- Estimar a frequência de abortamentos espontâneos, histórico de prematuridade e complicações clínico-obstétricas nas mães cujos recém-nascidos tenham a presença de hemoglobinas anormais detectada;
- Relacionar as complicações clínicas e dados demográficos como tipo de parto, realização de pré-natal com os parâmetros hematológicos e bioquímicos das mães e Recém-nascidos.

5. MATERIAIS E MÉTODOS

5.1 Modelo de Estudo

Estudo descritivo, prospectivo do tipo inquérito.

5.2 População de Referência

Recém-nascidos e suas respectivas mães.

5.3 População de Estudo

Recém-nascidos da Maternidade Pública de Manaus-AM Instituto da Mulher Dona Lindu, situada na zona Centro Sul, sendo que representa uma das principais maternidades da cidade de Manaus.

Trata-se de uma maternidade conveniada ao Sistema Único de Saúde (SUS) e recebe grande contingente da população da região metropolitana com características socioeconômicas menos favorecidas.

5.4 Critérios de Inclusão

Foram incluídos 825 recém-nascidos e respectivas mães, totalizando 820 no período entre março de 2014 a janeiro de 2015, independentemente do tipo de parto (normal ou cesariana) e idade gestacional (a termo ou pré-termo), no qual as mães concordaram em participar do Estudo assinando o Termo de Consentimento Livre e Esclarecido – TCLE e o Termo de Assentimento, no caso de menores de 18 anos. No caso destas, foi solicitada a assinatura dos pais ou responsável.

5.5 Critérios de Exclusão

Na observação do peso dos recém-nascidos das pacientes portadoras de hemoglobinopatias estruturais foram excluídos os recém-nascidos de gestantes que, mesmo possuindo a referida alteração, fossem portadoras de complicações clínicas tais como nefropatias, cardiopatias, diabetes mellitus e hipertensão arterial crônica.

5.6 Participantes

5.6.1 Tamanho Amostral

A prevalência foi baseada na média geral do País que é em torno de 2% para Doenças Falciformes.

P (prevalência) = 2% α (nível de significância) = 5% = z = 1,96

d (precisão desejada)=1% Q (100-P) = 100 - 2 = 98

Fórmula:

$$= (1,96)^{2}$$
 .2.98 /1 = 752.64 ~ **753** amostras

5.6.2 Exames realizados

Para a gestante foi coletado por punção venosa, enquanto para os RNs foi estabelecida a coleta de sete mililitros (7mL) de sangue de segmento de 15 a 20 cm de cordão umbilical, após ser ligado e seccionado pelo obstetra em seguida ao parto (normal ou cesariano), e distribuído em dois tubos: um contendo EDTA (Ácido etilenodeaminotetracético di-sódico) a 5% para análises hematológicas e cromatográficas (HPLC) e, outro sem anticoagulante destinado às análises bioquímicas. Quanto aos dados clínicos das gestantes e recém-nascidos foram preenchidos questionários mediante entrevista com a puérpera sobre os seus dados e os do recém-nascido, incluindo alguns dados também pelo prontuário médico.

5.6.3 Procedimentos

5.6.3.1 Análises Hematológicas

Após a coleta, os tubos foram identificados e encaminhados para o Laboratório de Análises Clínicas da Fundação de Apoio ao Hemoam Sangue Nativo para as análises hematológicas que incluíram a avaliação dos parâmetros como: Leucócitos (WBC), contagem global de Hemácias (HM), concentração de Hemoglobina (HB), Hematócrito (HT), volume corpuscular médio (VCM), hemoglobina corpuscular média (HCM), concentração de hemoglobina corpuscular média (CHCM), amplitude de distribuição dos eritrócitos (RDW), além dos neutrófilos, monócitos, linfócitos, basófilos, eosinófilos, contagem de plaquetas (PLT), volume Plaquetário médio (VPM) e a contagem de reticulócitos automatizada.

O hemograma e a contagem de reticulócitos automatizados foram realizados em contador - Advia 120 (SIEMENS DIAGNOSTICS), verificando os valores de referência para amostras de recém-nascidos em sangue de cordão umbilical (Apêndice 10).

5.6.3.2 Análises Bioquímicas

O projeto teve apoio da Bioclin e foi incluído no Programa "Bioclin na Escola" para a aquisição dos reagentes. As análises bioquímicas foram realizadas no aparelho A25 da Biosystems e foram incluídos: perfil hepático (Bilirrubina Total e Frações); estudo do Ferro (Ferro Sérico, Ferritina, Transferrina e Capacidade de Ligação do Ferro); perfil lipídico (Colesterol total e frações e triglicerídeos); perfil renal (Uréia e Creatinina); Desidrogenase Láctica (DHL) e Glicose. As calibrações dos reagentes foram realizadas de acordo com o fabricante.

5.6.3.3 Análise de Hemoglobinas

Todas as análises foram analisadas através da Cromatografia Líquida de Alta Performance- HPLC, processamento que utiliza o equipamento Bio-Rad, sistema automatizado Variant II® (Hercules, CA, USA). O equipamento dispõe de diferentes protocolos, sendo utilizado, para fins de triagem neonatal. Cada hemoglobina apresenta tempo de retenção característico, que é o tempo transcorrido entre a injeção da amostra até o ápice do pico da hemoglobina.

Esta técnica utiliza o princípio da troca iônica em um sistema fechado onde os dados de análise provenientes do detector são processados por um integrador e impressos no relatório da amostra de acordo com o tempo de retenção. A caracterização das diferentes frações de hemoglobina foi realizada comparando-se o tempo de retenção com os valores de calibração específicos (controle AFCS), fornecidos pelo fabricante (ADORNO et al., 2011).

Essa técnica é considerada altamente sensível para o estudo das hemoglobinas anormais porque evidencia pequenas quantidades de HbA, bem como HbS, HbC e outras hemoglobinas anormais, na presença de grandes quantidades de HbF. O sistema automatizado proporciona um processamento rápido das amostras com um alto índice de reprodutibilidade e exatidão, constituindo um excelente método para a triagem neonatal. O procedimento requer para as análises a adição de 5µL de amostra em 500µL de água destilada em cubetas de 1mL de capacidade.

O Kit Sickle cell, para o rastreamento de hemoglobinas nos recém-nascidos permite a caracterização das hemoglobinas variantes HbS, HbC, Hb D e Hb E, além de algumas variantes de migração rápida. Após hemólise total, acondicionar as amostras nos recipientes adequados e alojá-los no equipamento, que irá realizar os procedimentos pré-programados de leitura das amostras, sendo três minutos para neonatos.

5.6.3.4. Análise Clínica

Os dados complementares dos RNs foram obtidos em questionário (Apêndice 5), aplicados à puérpera e em caso de gestantes menores de idade, aplicados ao responsável no qual foram analisadas variáveis como: o peso; sexo; raça (branca, negra, parda ou amarela); se gemelar; tipo de nutrição (leite materno, parenteral ou fórmula láctea); se sofreu internação ou transfusão. Quanto à idade gestacional, os RNs com período menor que 36 semanas foram considerados prematuros.

As informações dos RNs que não puderam ser obtidas através dos questionários aplicados e aqueles que foram internados em Unidade de Terapia Intensiva foram complementadas através de consulta aos prontuários clínicos de acompanhamento do IMDL. Os critérios estabelecidos para peso foram adotados de acordo com as normas do Ministério da Saúde que estabelecem que bebês nascidos vivos antes de 37 semanas são denominados prematuros e baixo peso ao nascer definido como peso inferior a 2500Kg. Os de extremo baixo peso tem menos de 1000g.

Os questionários também contemplavam os dados das mães tais como: se realizou pré-natal, número de gestações, idade gestacional, se fumou durante a gravidez, abortos espontâneos anteriores e casos de anemia na família, além das manifestações clínicas durante a gestação tais como: anemia, dores ósseas, infecções urinárias e pré-eclâmpsia (DHEG), (Apêndice 4).

5.7 Análise Estatística

A partir das análises laboratoriais realizadas e dos questionários aplicados foi criado um Banco no programa SPSS versão 20.0 teste paramétrico ANOVA foi utilizado para a análise da distribuição de médias de variáveis quantitativas ou numéricas. Como limite de significância estatística, a probabilidade p foi considerada significativa se o valor fosse menor ou igual a 0,05% (p<=0,05). Utilizou-se o teste "t" de Student para cotejamento das médias dos pesos e o teste não-paramétrico do Qui-quadrado para análise da frequência da ocorrência de recém-nascidos portadores de alterações hemoglobínicas e correlação com as mães.

5.8 Fluxograma do estudo

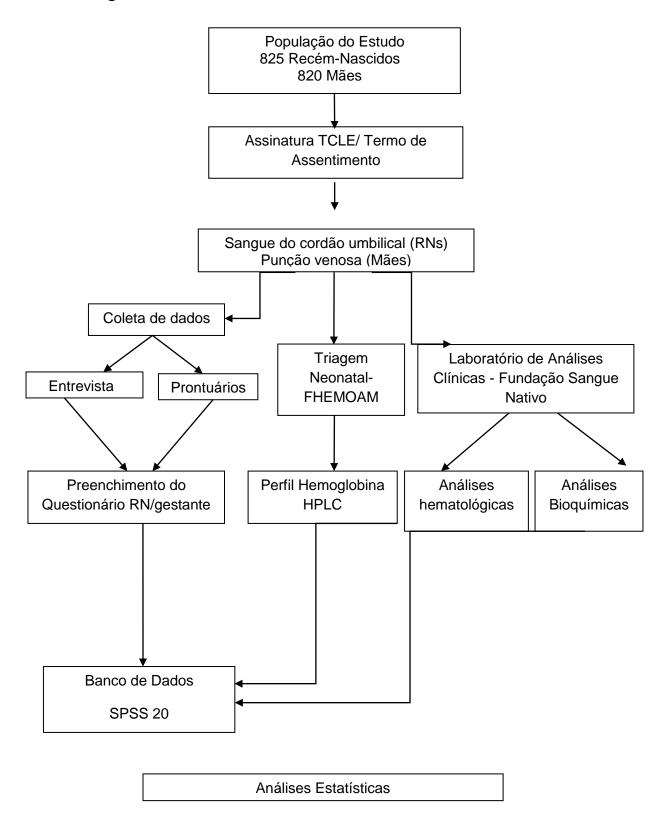


Figura 10 - Fluxograma do estudo.

5.9 Comitê de Ética

Este projeto foi aprovado pelo Comitê de Ética em Pesquisa (CEP) da Universidade Federal do Amazonas baseando-se na Plataforma Brasil com o protocolo: CAEE 19215713.6.0000.5020(Apêndice1). Foram concedidas bolsas PIBIC a cinco estudantes que participaram de todas as etapas do trabalho. Foram realizadas reuniões na maternidade para esclarecimento aos profissionais que direta ou indiretamente participariam do projeto.

Antes da coleta de dados era solicitado o consentimento das genitoras ou responsáveis (caso de menores de idade) que no mesmo momento eram informadas quanto aos objetivos da realização do estudo, os procedimentos necessários, a duração esperada, a relevância e a possibilidade de deixar de participar a qualquer tempo sem prejuízo no atendimento médico ou qualquer outro tipo de penalidade.

Posteriormente, cada gestante assinou o TCLE para maiores de 18 anos (Apêndice 2) de acordo com a resolução do Conselho Nacional de Saúde (CNS) nº466/2012. Para as gestantes menores de idade, as responsáveis legais assinaram o Termo de Assentimento Livre e Esclarecido para menores de 18 anos (Apêndice 3).

Todo o trabalho foi desenvolvido de acordo com os critérios da Regulamentação de Bioética no Brasil, Resolução 466/2012 do Conselho Nacional de Saúde e resolução complementar. Os experimentos seguiram as normas de Biossegurança de acordo com a Lei no. 11.105 de março de 2005, seguindo as normas técnicas existentes no manual de biossegurança da FIOCRUZ (Comissão Técnica de Biossegurança da FIOCRUZ – Ministério da Saúde, 1998).

As amostras coletadas foram armazenadas em banco de material biológico, sob responsabilidade do Prof. Dr. José Pereira de Moura Neto, na Faculdade de Ciências Farmacêuticas da UFAM, mantidas de acordo com os critérios da resolução CNS 347/2005, devidamente etiquetadas com código numérico garantindo o sigilo e a confidencialidade do doador, bem como a possibilidade de contato com o mesmo.

Todas as informações obtidas através das análises das amostras coletadas estão mantidas sob sigilo e só possuem acesso às mesmas, a equipe clínica e pesquisadores. Caso as gestantes e ou responsável não autorizassem a participação no estudo, a amostra do recém-nascido não era incorporada ao banco biológico e, foi devidamente descartada.

5.10 Financiamento

O Projeto foi submetido e aprovado no Programa de Pesquisa para o PPSUS no edital PPSUS de nº 001/2013, Decisão 287 de 2/12/2013. Trata-se, porém, de um subprojeto do Projeto "Estudo das Hemoglobinopatias Estruturais e de Síntese na Região Metropolitana de Manaus".

6. RESULTADOS

Neste estudo foram selecionados 825 recém-nascidos e suas respectivas mães (820) do Instituto da Mulher Dona Lindu durante os meses de março de 2014 a janeiro de 2015.

Nosso estudo mostrou 22 (2,7%) RNs portadores de hemoglobinopatias estruturais, sendo 16 (2%) FAS e 6 (0,7%) FAD. Foram incluídas 820 mães, as quais responderam a um questionário relativo aos dados individuais e a sua história obstétrica atual e pregressa.

6.1. Características clínicas das Gestantes do Instituto da Mulher Dona Lindu

A faixa etária das gestantes variou de 13 a 44 anos, com média de idade de (23,7 ± 6,6 anos). Os dados relativos à idade gestacional e partos prematuros são mostrados na Tabela 1.

Com relação ao número de gestações, observou-se que 375 (45,9%) eram primigestas enquanto que 652 (54,1%) eram multíparas. Em média, cada gestante teve três gestações, e aquelas com filhos com perfil AS, duas gestações, enquanto com AD, apenas uma gestação. As frequências de gestações entre as puérperas do IMDL estão descritas na Tabela 2.

Tabela 1. Frequência dos partos por idade gestacional do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

	Quantidade			
	Partos			
Idade Gestacional	N %			
(meses)				
7	21	2,57		
8	139	16,95		
9	660	80,48		
Total	820	100,0		

Tabela 2. Frequência de gestações em puérperas do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

	Quantidade Gravidez		
Número de gestações	N	%	
1	375	45,73	
2	224	27,32	
3	103	12,56	
4	52	6,34	
5	31	3,78	
6	16	1,95	
7	07	0,85	
8	05	0,07	
9	05	0,07	
10	02	0,24	
Total	652	100	

Das 820 gestantes estudadas, 722 (88%) informaram que tiveram acompanhamento pré-natal e apenas 27 (3,3%) mantiveram o hábito de fumar durante a gravidez. Com relação às queixas clínicas nas gestantes 42 (5,1%)

apresentaram Doença Hipertensiva Específica da Gravidez (DHEG) e 28 (3,4%) diabetes gestacional. A anemia na família foi encontrada em 81 (9,8%) das gestantes, todavia, todas afirmaram desconhecerem a causa.

Tabela 3. Frequência de anemia em família de gestantes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

·	Anemia na Família			
-	N	%		
IRMÃOS	43	5,2%		
MÃE	29	3,6%		
TIOS	4	0,5%		
PAI	2	0,2%		
SOBRINHOS	2	0,2%		
AVÓS	1	0,1%		
Total	81	100		

Das 820 gestantes do estudo, apenas 12 (1,46%) relataram ter tido pelo menos um (01) óbito fetal, e todas tiveram filhos portadores de hemoglobina FAA, enquanto as que relataram abortos espontâneos, 61 (7,43%) apresentaram um ou dois casos, e apenas duas (02) mais de três abortos e todas tiveram filhos com hemoglobina normal FAA.

6.2. Associação entre a Idade Gestacional e os dados hematológicos das gestantes do IMDL

A comparação entre a Idade Gestacional e os dados hematológicos está descrita na Tabela 4.

Tabela 4. Análise da Idade Gestacional e os dados hematológicos e bioquímicos das gestantes atendidas no Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

	IDA	ADE GESTACION	IAL (Meses)		
Dados	MÉDIA ± DP				
hematológicos	7 8 N= 30 N = 204		9 N = 586	Valor P	
				T	
RBC (10 ⁶ /mm ³)	4,11 ± 0,82	$4,28 \pm 0,44$	4,29 ± 0,41	0,400	
HB (g/dl)	12,4 ± 2,42	12,44 ± 1,47	12,47 ± 1,31	0,985	
HT (%)	39 ± 8,48	38,4 ± 5,40	39,4 ± 4,56	0,655	
VCM (fL)	93,25 ± 6,25	90,35 ± 6,08	$90,03 \pm 6,60$	0,292	
HCM (pg)	$30,39 \pm 2,03$	29,12 ± 2,44	29,10 ± 2,27	0,212	
CHCM (g/dl)	32,60 ± 0,82	32,21 ± 1,37	32,33 ± 1,39	0,618	
RDW (%)	13,68 ± 1,28	14,01 ± 1,13	14,06 ± 2,08	0,816	
WBC (x10 ⁹ /L)	12,65 ± 03,40	11,94 ± 3,42	12,24 ± 3,60	0,739	
SEG (%)	9,45 ± 2,61	9,04 ± 3,16	9,37 ± 3,64	0,759	
LINF (%)	1,68 ± 0,63	2,09 ± 1,35	1,8931 ± 1,419	0,451	
MONO (%)	0,72 ± 0,71	0,51 ± 0,27	0,4760 ± 0,214	0,005	
EOS (%)	0,14 ± 0,15	0,16 ± 0,19	0,1670 ± 0,194	0,862	
BASO (%)	0,042 ± 0,41	0.07 ± 0.14	0,0517 ± 0,92	0,384	
PLT (x10 ⁹ /L)	267,2 ± 91,77	243,98 ± 71,55	237,05 ± 65,20	0,280	
VPM (fL)	7,93 ± 1,326	8,95 ± 1,69	8,78 ± 1,41	0,110	

6.3. Associação entre a Prematuridade e os dados hematológicos e bioquímicos das gestantes do IMDL

Tabela 5. Análise dos dados hematológicos em partos prematuros de gestantes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	PARTO PREMATURO	MÉDIA	± DP	p-value
RBC x 10 ⁶ /mm ³	Sim	4,23	0,49	0,230
NDO X 10 /IIIII	Não	4,29	0,41	0,200
HB (g/dL)	Sim	12,3	1,57	0,505
TID (g/dL)	Não	12,4	1,30	0,000
HT (%)	Sim	38,38	4,94	0,616
111 (70)	Não	38,63	4,09	0,010
VCM (fL)	Sim	90,66	6,09	0,424
V OIVI (IL)	Não	90,06	6,63	0,727
НСМ	Sim	29,27	2,35	0,557
TIOW	Não	29,12	2,26	0,007
СНСМ	Sim	32,28	1,39	0,665
OFICIVI	Não	32,35	1,40	
RDW	Sim	13,94	1,13	0,951
T(DVV	Não	13,93	1,26	
WBC	Sim	12,00	3,37	0,490
VVDO	Não	12,28	3,61	0,400
SEG (%)	Sim	9038,18	3074,5	0,374
OLO (70)	Não	9394,22	3634,4	0,07 4
LINF (%)	Sim	2035,6	1253,6	0,393
LII (70)	Não	1902,0	1409,1	0,000
MONO (%)	Sim	540,3	395,7	0,031
10110 (70)	Não	476,5	219,7	0,001
EOS (%)	Sim	164,9	206,0	0,971
200 (70)	Não	165,7	192,3	0,37 1
BASO (%)	Sim	62,7	125,9	0,377
DAGO (70)	Não	52,69	93,34	0,011
PLT	Sim	246,0	71,78	0,232
1 61	Não	237,0	65,29	0,202
VPM	Sim	8,82	1,67	0,885
VPIVI	Não	8,79	1,42	0,003

Tabela 6. Análise dos dados bioquímicos em partos prematuros de gestantes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	PARTO PREMATURO	MÉDIA	± DP	p- value
UREIA	Sim	20,64	6,3	0,105
UNEIA	Não	19,21	5,9	0,105
CREATININA	Sim	0,72	0,17	0,547
CREATININA	Não	0,70	0,15	0,547
BD	Sim	0,12	0,08	0,395
	Não	0,17	0,23	0,393
BI	Sim	0,16	0,17	0,552
ы	Não	0,20	0,25	0,552
ВТ	Sim	0,37	0,22	0.300
ы	Não	0,36	0,40	0,389
GLICOSE	Sim	73,7	13,0	0,019
GLICOSE	Não	83,4	16,5	0,019
TDICLICEDIDECC	Sim	215,2	96,6	0.704
TRIGLICERIDEOS	Não	219,8	85,9	0,721
HDL	Sim	47,2	15,7	0.712
	Não	48,1	16,7	0,713
VLDL	Sim	31	9,64	0,413
VLDL	Não	42,7	23,8	0,413
COLESTEROL	Sim	160,2	52,2	0.055
COLESTEROL	Não	180,6	59,9	0,055
LDL	Sim	84,0	32,2	0,544
LDL	Não	111,3	42,5	0,544
DHL	Sim	385,7	138,2	0,671
DHL	Não	375,9	166,8	0,671
FERRO	Sim	98,4	121,9	0.700
FERRO	Não	91,8	91,51	0,789
FERRITINA	Sim	98,2	43,1	0.060
	Não	95,03	54,5	0,862
TDANICEEDDINIA	Sim	115,7	35,79	0.100
TRANSFERRINA	Não	209,7	145,4	0,100
CTLFERRO	Sim	238,0	159,7	0.001
	Não	467,5	118,9	0,081

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.4 Associação entre Abortos Espontâneos e os dados hematológicos e bioquímicos das gestantes do IMDL

Tabela 7. Análise entre Abortos Espontâneos e dados hematológicos das gestantes atendidas no Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

	ABORTOS ESPONTANEOS				
Dados Hematológicos	MÉDIA ± DP				
ematereg.eee	SIM	NÃO	p-value		
RBC (10 ⁶ /mm ³)	$4,30 \pm 0,430$	4,27 ± 0,456	0,647		
HB (g/dl)	12,73 ± 1,187	12,27 ± 1,43	0,017		
HT (%)	39,36 ± 3,88	37,39 ± 4,71	0,171		
VCM (fL)	91,48 ± 7,37	88,30 ± 6,63	<0,001		
HCM (pg)	29,68 ± 2,16	28,77 ± 2,34	0,004		
CHCM (g/dl)	$32,48 \pm 0,96$	32,60 ± 1,75	0,581		
RDW (%)	14,01 ± 1,15	13,2 ± 2,05	0,003		
WBC (x10 ⁹ /L)	12,39 ± 3,37	11,79 ± 3,71	0,228		
SEG (%)	9,21 ± 3,77	9,02 ± 3,65	0,706		
LINF (%)	2,16 ± 1,15	1,95 ± 1,17	0,203		
MONO (%)	4,02 ± 1,86	3,90 ± 1,86	0,361		
EOS (%)	0,14 ± 0,157	0,16 ± 0,186	0,411		
BASO (%)	0.04 ± 0.53	0,04 ± 0,089	0,822		
PLT (x10 ⁹ /L)	239,6 ± 76,48	239,37 ± 65,94	0,973		
VPM (fL)	9,04 ± 1,75	8,72 ± 1,44	0,100		

Tabela 8. Análise entre Abortos Espontâneos e dados bioquímicos das gestantes atendidas no Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

	T		
Dados Bioquímicos	ABORTOS ES MÉDIA	p-value	
	SIM	NÃO	
U (mg/dL)	19,08 ± 4,60	19,69 ± 6,16	0,061
CREA (mg/dL)	0,73 ± 0,21	0,70 ± 0,15	0,313
BD (mg/dL)	0,20 ± 0,14	0,14 ± 0,17	0,287
BI (mg/dL)	0,41 ± 0,45	0,161 ± 0,168	<0,001
BT (mg/dl)	0,62 ± 0,57	0,31 ± 0,28	0,001
GLICO (mg/dL)	85,34 ± 10,6	82,2 ± 19,4	0,622
TRIG(mg/dL)	247,2 ± 99,09	212,3 ± 92,07	0,092
HDL(mg/dL)	49,87 ± 18,46	51,95 ± 18,13	0,584
VLDL (mg/dl)	64,7 ± 0,35	41,00 ± 22,56	0,140
COL (mg/dL)	200,4 ± 57,07	174,0 ± 58,43	0,117
LDL (mg/dL)	159,4 ± 22,6	101,79 ±39,04	0,040
DHL (U/L)	424,5 ± 266,1	372,8 ± 145,4	0,111
FERRO (mcg/dLl)	98,0 ± 113,6	81,5 ± 74,05	0,417
FERRITINA (ng/mL)	69,23 ± 43,8	63,53 ± 60,36	0,792
TRANSFERRINA (mg/dL)	261,06 ± 167,8	249,57± 124,9	0,857
CTLFERRO (µg/dL)	391,6 ± 139,1	431,6 ± 124,0	0,583

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.5 Associação entre Doença Hipertensiva Específica da Gravidez e os dados hematológicos e bioquímicos das gestantes do IMDL

A comparação entre a ocorrência da DHEG e os dados hematológicos estão descritas na Tabela 9. Os marcadores bioquímicos, na tabela 10.

Tabela 9. Análise dos dados hematológicos de gestantes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	DHEG	MÉDIA	± DP	p-value
RBC x 10 ⁶ /mm ³	Sim	4,36	0,504	0,304
KDC X 107111111	Não	4,26	0,399	0,304
HB (g/dL)	Sim	12,93	1,35	0,082
ПБ (g/uL)	Não	12,40	1,25	0,062
⊔ ⊤ /0/ \	Sim	39,8	4,22	0,054
HT (%)	Não	38,0	3,82	0,054
VCM (fL)	Sim	91,50	3,56	0,207
V CIVI (IL)	Não	89,51	6,60	0,207
HCM	Sim	29,69	1,21	0,303
HCIVI	Não	29,15	2,19	0,303
CHCM	Sim	32,45	0,83	0.640
CHCIVI	Não	32,58	1,12	0,640
DDW	Sim	13,91	1,03	0.770
RDW	Não	14,01	1,32	0,772
WBC	Sim	11,30	3,38	0,336
WDC	Não	12,10	3,41	
SEC (0/)	Sim	8412,2	3171,6	0,315
SEG (%)	Não	9226,2	3338,3	0,313
INIE (0/ \	Sim	2038,3	734,4	0.247
LINF (%)	Não	1823,2	765,5	0,247
MONO (0/)	Sim	400,1	119,7	0.250
MONO (%)	Não	479,2	288,4	0,250
EOC (0/)	Sim	157,1	227,9	0.004
EOS (%)	Não	157,5	170,2	0,994
DACO (0/)	Sim	51,34	72,44	0.600
BASO (%)	Não	62,02	111,2	0,688
PLT	Sim	231,7	59,63	0,717
FLI	Não	237,3	64,01	0,717
VPM	Sim	8,58	1,69	0,342
V F IVI	Não	8,93	1,47	0,342

Tabela 10. Análise dos dados bioquímicos quanto a dheg em gestantes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUIMICOS	DHEG	MÉDIA	± DP	p-valu
UREIA	Sim	20,4	5,21	0,351
UNEIA	Não	18,8	5,65	0,331
CREATININA	Sim	0,76	0,20	0,146
CREATININA	Não	0,69	0,15	0,146
BD	Sim	0,33	0,49	0,339
	Não	0,18	0,27	0,339
BI	Sim	0,21	0,16	0,931
DI	Não	0,22	0,27	0,931
BT	Sim	0,55	0,65	0.574
DI	Não	0,41	0,44	0,574
GLICOSE	Sim	88,8	12,2	0,190
GLICOSE	Não	80,8	15,2	0,190
TRIGLICERIDEOS	Sim	306,5	91,372	0,009
INIGLICENIDEOS	Não	214,0	89,9	0,009
HDL	Sim	52,22	22,03	0,303
ПОС	Não	47,04	14,95	0,303
COLESTEROL	Sim	151,3	83,7	0,563
COLLSTENOL	Não	171,4	58,8	0,303
DHL	Sim	352,4	116,2	0,707
	Não	370,1	159,3	0,707
FERRO	Sim	94,3	65,9	0,789
LINIO	Não	83,7	85,64	0,709
FERRITINA	Sim	88,51	45,43	0,610
	Não	77,35	45,42	0,010
	Sim	151,8	109,9	
TRANSFERRINA	Não	216,4	146,7	0,071
	Não	469,7	111,6	

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

.

6.6 Associação entre tipo de parto e os dados hematológicos e bioquímicos das gestantes do IMDL

Tabela 11. Análise dos dados hematológicos do tipo de parto de gestantes e RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	TIPO PARTO	MÉDIA	± DP	p-value
RBC x 10 ⁶ /mm ³	NORMAL	4,32	0,42	0.115
RDC X 10°/IIIIII°	CESÁREA	4,25	0,44	0,115
	NORMAL	12,5	1,29	0.202
HB (g/dL)	CESÁREA	12,3	1,49	0,203
HT (%)	NORMAL	38,81	4,22	0,184
	CESÁREA	38,2	4,46	0,104
VCM (fL)	NORMAL	89,79	6,44	0,812
V CIVI (IL)	CESÁREA	89,95	6,84	0,012
HCM	NORMAL	28,98	2,19	0,812
HOW	CESÁREA	29,03	2,48	0,012
CHCM	NORMAL	32,29	1,32	0.007
CHCIVI	CESÁREA	32,29	1,78	0,997
RDW	NORMAL	13,88	1,21	0.657
KDW	CESÁREA	13,83	1,30	0,657
WBC	NORMAL	12,30	3,59	0.625
VVDC	CESÁREA	12,13	3,63	0,625
SEG (%)	NORMAL	9457,02	3563,4	0.564
SEG (%)	CESÁREA	9248,67	3560,8	0,564
INIE (0/)	NORMAL	1916,8	978,47	0.506
LINF (%)	CESÁREA	2018,5	2011,3	0,506
MONO (0/)	NORMAL	494,5	238,0	0.504
MONO (%)	CESÁREA	510,1	329,1	0,584
EOC (0/)	NORMAL	165,0	176,78	0.766
EOS (%)	CESÁREA	170,7	207,4	0,766
DASO (0/)	NORMAL	50,3	82,7	0.076
BASO (%)	CESÁREA	50,12	89,6	0,976
PLT	NORMAL	242,0	63,7	0.745
ΓLI	CESÁREA	239,8	71,9	0,745
	NORMAL	8,77	1,48	
VPM	CESÁREA	8,75	1,41	0,866
	CESÁREA	111,6	50,0	<u> </u>

Tabela 12. Análise dos dados bioquímicos do tipo de parto de gestantes e RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	TIPO PARTO	MÉDIA	± DP	p-value
UREIA	NORMAL	19,2	5,85	0.042
UREIA	CESÁREA	19,3	5,86	0,943
CREATININA	NORMAL	0,71	0,14	0,700
OREATHMAN	CESÁREA	0,70	0,16	0,700
BD	NORMAL	0,15	0,16	0,466
	CESÁREA	0,18	0,27	0,400
BI	NORMAL	0,15	0.222	0,354
Ы	CESÁREA	0,20	0,223	0,334
ВТ	NORMAL	0,31	0,34	0,317
DI	CESÁREA	0,38	0,39	0,317
GLICOSE	NORMAL	80,2	10,5	0,244
GLICOSE	CESÁREA	83,9	19,9	
TDICLICEDIDECC	NORMAL	218,4	85,2	0.000
TRIGLICERIDEOS	CESÁREA	231,8	89,8	0,282
LIDI	NORMAL	48,54	17,0	0.500
HDL	CESÁREA	50,16	18,5	0,508
VIDI	NORMAL	38,9	19,9	0.007
VLDL	CESÁREA	50.8	28,4	0,227
COLECTEDOL	NORMAL	173,2	57,1	0.475
COLESTEROL	CESÁREA	181,9	71,8	0,475
1.01	NORMAL	107,3	32,2	0.044
LDL	CESÁREA	111,6	50,0	0,841
	NORMAL	372,8	130,8	0.004
DHL	CESÁREA	396,3	208,5	0,321
	NORMAL	91,8	107,2	0.045
FERRO	CESÁREA	96,7	92,48	0,815
EED DITINIA	NORMAL	94,4	56,67	0.404
FERRITINA	CESÁREA	84,6	48,0	0,461
	NORMAL	151,8	109,9	
TRANSFERRINA	CESÁREA	216,4	146,7	0,071
OT! 55550	NORMAL	438,4	159,7	0.000
CTLFERRO	CESÁREA	469,7	111,6	0,630
eatinina: GGT-Gama Glut				Rilirruhina D

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Billirrubina Direta; BI-Billirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.7 Associação entre parto prematuro e os dados hematológicos e bioquímicos das gestantes do IMDL

Tabela 13. Análise dos dados hematológicos em partos prematuros de gestantes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	PARTO PREMATURO	MÉDIA	± DP	p-value
RBC x 10 ⁶ /mm ³	Sim	4,23	0,49	0,230
	Não	4,29	0,41	0,230
HB (g/dL)	Sim	12,3	1,57	0,505
TID (g/dL)	Não	12,4	1,30	0,303
HT(%)	Sim	38,38	4,94	0,616
	Não	38,63	4,09	0,010
VCM (fL)	Sim	90,66	6,09	0,424
V CIVI (IL)	Não	90,06	6,63	0,424
HCM	Sim	29,27	2,35	0,557
T ICIVI	Não	29,12	2,26	0,337
CHCM	Sim	32,28	1,39	0,665
	Não	32,35	1,40	0,003
RDW	Sim	13,94	1,13	0,951
KDW	Não	13,93	1,26	0,951
WBC	Sim	12,00	3,37	0,490
WBC	Não	12,28	3,61	0,490
SEG(%)	Sim	9038,18	3074,5	0,374
3LG(70)	Não	9394,22	3634,4	0,374
LINF(%)	Sim	2035,6	1253,6	0,393
LIINI (70)	Não	1902,0	1409,1	0,393
MONO(%)	Sim	540,3	395,7	0,031
WONO(76)	Não	476,5	219,7	0,031
EOS(%)	Sim	164,9	206,0	0,971
EU3(%)	Não	165,7	192,3	0,971
DASO(0/)	Sim	62,7	125,9	0.277
BASO(%)	Não	52,69	93,34	0,377
PLT	Sim	246,0	71,78	0,232
	Não	237,0	65,29	0,232
VPM	Sim	8,82	1,67	0.995
V F IVI	Não	8,79	1,42	0,885

Tabela 14. Análise dos dados bioquímicos em partos prematuros de gestantes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	PARTO PREMATURO	MÉDIA	± DP	p- value	
UREIA	Sim	20,64	6,3	0,105	
UNEIA	Não	19,21	5,9	0,105	
CREATININA	Sim	0,72	0,17	0,547	
CREATININA	Não	0,70	0,15	0,547	
BD	Sim	0,12	0,08	0,395	
BD	Não	0,17	0,23	0,393	
BI	Sim	0,16	0,17	0,552	
ы	Não	0,20	0,25	0,552	
BT	Sim	0,37	0,22	0.200	
ы	Não	0,36	0,40	0,389	
GLICOSE	Sim	73,7	13,0	0.010	
GLICOSE	Não	83,4	16,5	0,019	
TRIGLICERIDEOS	Sim	215,2	96,6	0.724	
	Não	219,8	85,9	0,721	
LIDI	Sim	47,2	15,7	0.712	
HDL	Não	48,1	16,7	0,713	
VLDL	Sim	31	9,64	0,413	
VLDL	Não	42,7	23,8	0,413	
COLESTEROL	Sim	160,2	52,2	0.055	
COLESTEROL	Não	180,6	59,9	0,055	
LDL	Sim	84,0	32,2	0.544	
LDL	Não	111,3	42,5	0,544	
DHL	Sim	385,7	138,2	0.674	
DUL	Não	375,9	166,8	0,671	
FERRO	Sim	98,4	121,9	0.700	
FERRO	Não	91,8	91,51	0,789	
FERRITINA	Sim	98,2	43,1	0.060	
FERRITINA	Não	95,03	54,5	0,862	
TRANSFERRINA	Sim	115,7	35,79	0.100	
IKANOFEKKINA	Não	209,7	145,4	0,100	
CTI FERRO	Sim	238,0	159,7	0.001	
CTLFERRO	Não	467,5	118,9	0,081	

GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; GLICO-Glicose; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.8 Associação entre anemia na família e os dados hematológicos e bioquímicos das gestantes do IMDL

A comparação entre anemia na família e os dados hematológicos e bioquímicos
não demonstraram significância estatística conforme as tabelas 16 e 17.

Tabela 15. Análise dos dados hematológicos de gestantes quanto ao gênero do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	SEXO	MÉDIA	± DP	p-value	
RBC x 10 ⁶ /mm ³	MASC	4,27	0,41	0,422	
NDC X 10°/IIIII1°	FEM	4,32	0,46	0,422	
LID (a/dl)	MASC	12,35	1,34	0,779	
HB (g/dL)	FEM	12,57	1,39	0,779	
LIT/0/\	MASC	38,29	4,16	0.052	
HT(%)	FEM	38,91	4,53	0,952	
\/CN4 (fL)	MASC	89,69	6,65	0.270	
VCM (fL)	FEM	90,16	6,55	0,379	
HCM	MASC	28,94	2,39	0.574	
HCIVI	FEM	29,14	2,133	0,574	
CHCM	MASC	32,27	1,51	0.502	
CHCIVI	FEM	32,35	1,42	0,502	
RDW	MASC	13,89	1,39	0.660	
RDW	FEM	13,90	1,25	0,660	
WBC	MASC	12,3426	3,85	0.275	
VVDC	FEM	12,1494	3,43	0,275	
SEG(%)	MASC	9508,6	3810,0	0,360	
3LG(70)	FEM	9249,3	3353,8	0,300	
LINF(%)	MASC	1929,6	1767,7	0,300	
LINF(/0)	FEM	1953,2	729,99	0,300	
MONO(%)	MASC	498,4	278,9	0,784	
IVIOINO(76)	FEM	491,2	265,7	0,704	
EOS(0/)	MASC	167,9	197,37	0,784	
EOS(%)	FEM	163,9	171,52	0,704	
BASO(0/)	MASC	60,21	120,2	0,909	
BASO(%)	FEM	47,56	61,7	0,909	
PLT	MASC	240,0	71,46	0,301	
F L I	FEM	239,1	59,35	0,301	
VPM	MASC	8,77	1,52	0.088	
V F IVI	FEM	8,82	1,38	0,988	

Tabela 16. Análise dos dados bioquímicos de gestantes quanto ao gênero do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	SEXO	MÉDIA	± DP	p-value	
UREIA	MASC	19,05	5,78	0.204	
UREIA	FEM	19,29	5,70	0,381	
CREATININA	MASC	0,69	0,141	0.202	
CREATININA	FEM	0,73	0,157	0,203	
BD	MASC	0,142	0,143	0.620	
БО	FEM	0,18	0,27	0,628	
BI	MASC	0,164	0,205	0.712	
DI	FEM	0,216	0,188	0,712	
BT	MASC	0,30	0,30	0.647	
ы	FEM	0,40	0,42	0,647	
GLICOSE	MASC	81,82	14,2	0.460	
GLICOSE	FEM	81,07	17,9	0,468	
TRIGLICERIDEOS	MASC	222,4	87,87	0.720	
- IRIGLICERIDEOS	FEM	223,5	86,21	0,738	
HDL	MASC	48,07	16,35	0,080	
	FEM	48,43	17,43	0,000	
VLDL	MASC	47,73	28,13	0,064	
VEDE	FEM	39,60	22,51	0,004	
COLESTEROL	MASC	167,3	58,17	0,587	
COLLSTEROL	FEM	187,41	63,48	0,307	
LDL	MASC	121,7	39,78	0,951	
	FEM	91,63	40,80	0,951	
DHL	MASC	365,0	138,0	0.656	
	FEM	401,0	189,2	0,656	
FERRO	MASC	105,8	109,9	0,771	
FERRO	FEM	79,92	89,98	0,771	
FERRITINA	MASC	100,74	60,53	0,740	
FERRITINA	FEM	85,19	44,89	0,740	
TRANSFERRINA	MASC	198,87	145,81	0 020	
	FEM	164,49	111,5	0,838	
CTLFERRO	MASC	455,3	38,80	0.742	
	FEM	456,4	183,5	0,742	

GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta;BI-Bilirrubina Indireta; GLICO-Glicose; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.9.	Associação	entre	diabetes	gestacional	е	os	dados	hematológicos	е
bioq	uímicos das	gestan	tes do IMI	DL					

A comparação entre anemia na família e os dados hematológicos e bioquímicos não demonstraram significância estatística conforme tabelas 17 e 18.

Tabela 17. Análise dos dados hematológicos de gestantes quanto à diabetes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	DIABETE GESTACIONAL	MÉDIA	± DP	p-value	
RBC x 10 ⁶ /mm ³	Sim	4,51	0,27	0.422	
RBC X 109111111	Não	4,28	0,39	0,422	
HB (g/dL)	Sim	12,75			
FIB (g/dL)	Não	12,49	1,287	0,779	
HT(%)	Sim	38,30	0,14	0,952	
111(78)	Não	38,13	3,90	0,932	
VCM (fL)	Sim	84,97	4,87	0,379	
VCIVI (IL)	Não	89,17	6,69	0,379	
HCM	Sim	28,28	1,57	0,574	
TICIVI	Não	29,20	2,29	0,374	
CHCM	Sim	33,28	0,06	0,502	
CHOM	Não	32,75	1,11	0,302	
RDW	Sim	13,55	0,49	0,660	
	Não	14,00	1,46	0,000	
WBC	Sim	14,130	0,60	0,275	
VVBC	Não	11,73	3,07	0,273	
SEG(%)	Sim	10900,1	898,4	0,360	
3LG(78)	Não	8909,9	3055,6	0,300	
LINF(%)	Sim	2269,4	1155,7	0,300	
Elivi (78)	Não	1736,8	716,2	0,300	
MONO(%)	Sim	461,1	109,6	0,784	
MONO(78)	Não	423,3	194,0	0,764	
EOS(%)	Sim	185,41	87,83	0,862	
203(78)	Não	162,3	186,9	0,002	
BASO(%)	Sim	71,51	43,00	0,909	
DAGO(/0)	Não	60,46	136,0	0,308	
PLT	Sim	182,5	6,36	0,301	
FLI	Não	228,0	61,91	0,001	
	Sim	8,85	0,212		
VPM	Não	8,86	1,570	0,988	
	Não	354,3	145,3		

Tabela 18. Análise dos dados bioquímicos de gestantes quanto à diabetes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	DIABETE GESTACIONAL	MÉDIA	± DP	p-value
UREIA	Sim	16,30	5,046	0,381
	Não	18,79	4,802	3,001
CDE ATIMINIA	Sim	0,80	0,124	0,203
CREATININA	Não	0,68	0,158	0,200
	Sim	0,10	0,15	0,628
BD	Não	0,16	0,13	0,020
	Sim	0,140	0,18	0,712
BI	Não	0,233	0,24	0,712
	Sim	0,240	0,30	0,647
ВТ	Não	0,400	0,338	0,047
0110005	Sim	93,50	14,2	0,468
GLICOSE	Não	81,35	16,25	0,400
TRIGLICERIDE	Sim	228,0	51,97	0,738
OS	Não	208,4	99,70	0,730
001 5075001	Sim	255,5	12,02	0,064
COLESTEROL	Não	174,1	59,99	0,004
DIII	Sim	400,4	31,30	0,587
DHL	Não	354,3	145,3	J 0,307

GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Billirrubina Direta;BI-Billirrubina Indireta; GLICO-Glicose; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.10. Associação entre o pré-natal e dados hematológicos e bioquímicos das gestantes do IMDL

Tabela 19. Análise dos dados hematológicos das gestantes quanto ao prénatal de gestantes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	PRÉ-NATAL	MÉDIA	± DP	p-value	
RBC x 10 ⁶ /mm ³	Sim	4,26	0,40	0,472	
NDC X 10°/IIIIII°	Não	4,19	0,41	0,472	
	Sim	12,47	1,23	0,614	
HB (g/dL)	Não	12,34	1,18	0,014	
HT(%)	Sim	38,36	3,79	0,265	
	Não	37,46	3,50	0,203	
VCM (fL)	Sim	90,26	6,21	0,499	
V CIVI (IL)	Não	89,38	4,48	0,499	
HCM	Sim	29,33	1,99	0,794	
	Não	29,44	1,56	0,794	
CHCM	Sim	32,51	1,098	0,032	
	Não	33,02	1,037	0,032	
RDW	Sim	13,99	1,277	0,346	
RDW	Não	13,74	1,035	0,340	
WBC	Sim	12,17	3,43	0,611	
VVDC	Não	11,80	3,26	0,011	
SEG(%)	Sim	9267,5	3343,7	0,652	
3LG(70)	Não	8949,9	3432,2	0,032	
LINF(%)	Sim	1918,1	805,95	0,394	
LINF(/0)	Não	1775,5	660,3	0,394	
MONO(%)	Sim	501,4	296,1	0,439	
IVIOINO(76)	Não	454,2	226,9	0,439	
EOS(0/)	Sim	158,2	177,32	0.570	
EOS(%)	Não	179,0	185,3	0,579	
PACO(0/)	Sim	61,01	97,50	0.027	
BASO(%)	Não	56,88	68,78	0,837	
PLT	Sim	236,61	64,74	0,774	
	Não	240,48	56,28	0,774	
\/D\/	Sim	9,03	1,568	0.470	
VPM	Não	8,80	1,048	0,470	

Tabela 20. Análise dos dados bioquímicos das gestantes quanto ao pré-natal do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	PRÉ-NATAL	MÉDIA	± DP	p-value	
	Sim	19,15	5,59	0.047	
UREIA	Não	19,63	8,71	0,817	
CREATININA	Sim	0,704	0,163	0,550	
CREATININA	Não	0,668	0,117	0,550	
BD	Sim	0,217	0,339	0,712	
טט	Não	0,090	0,27	0,712	
BI	Sim	0,264	0,3008	0,593	
DI	Não	0,100	0,188	0,595	
ВТ	Sim	0,482	0,521	0.502	
DI	Não	0,190	0,42	0,583	
GLICOSE	Sim	83,74	13,91	0.701	
GLICOSE	Não	73,30	17,9	0,701	
TRIGLICERIDEOS	Sim	223,7	94,00	0,085	
	Não	165,8	37,52	0,065	
	Sim	46,75	15,36		
HDL	Não	42,35	9,65	0,425	
	Não	39,60	22,51		
	Sim	172,28	58,96		
COLESTEROL	Não	154,28	52,09	0,433	
	Não	91,63	40,80		
DHL	Sim	378,3	163,0	0,141	
<u></u>	Não	292,4	62,34	0,141	
FERRO	Sim	81,83	83,03	0,273	
FERRO	Não	128,0	139,0	0,273	
FERRITINA	Sim	76,27	43,63	0.275	
	Não	100,9	63,12	0,375	
	Sim	216,7	154,09		
TRANSFERRINA	Não	87,16	33,60	0,260	
	Não	456,4	183,5		

GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; GLICO-Glicose; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.11. Associação de dados hematológicos e bioquímicos entre gestantes e RNs quanto ao tipo de nutrição do IMDL

Tabela 21. Distribuição pelo tipo de nutrição e dados hematológicos das gestantes atendidas no Instituto da Mulher Dona Lindu.

DADOS HEMATOLÓGICO S	Parenteral	Leite Materno	Fórmula Láctea	Enteral	p- value
RBC x 10 ⁶ /mm ³	4,03 ± 0,410	4,30 ± 0,43	4,14 ± 0,49	4,30 ± 0,61	0,067
HB (g/dl)	11,93 ± 1,18	12,50 ± 1,33	11,79 ± 2,17	12,37 ± 1,97	0,135
HT (%)	37,28 ± 4,49	38,82 ± 4,26	36,78 ± 5,95	38,70 ± 6,42	0,244
VCM (fL)	92,52 ± 6,83	90,40 ± 6,58	88,92 ± 10,32	89,78 ± 6,70	0,408
HCM (pg)	29,68 ± 2,16	29,11 ± 2,25	28,50 ± 4,16	28,69 ± 1,68	0,556
CHCM (pg)	32,13 ± 1,83	32,22 ± 1,37	31,95 ± 1,97	32,00 ± 1,22	0,847
RDW (%)	14,04 ± 1,60	14,00 ± 1,154	13,96 ± 1,62	14,65 ± 3,80	0,770
WBC (x10 ⁹ /mm³)	11,55 ± 2,96	12,60 ± 3,79	11,77 ± 2,12	11,28 ± 3,02	0,526
Seg (%)	9063,5 ± 2938,4	9715,7± 3749	8716,2± 2038,4	8421,5± 2586,7	0,630
Linf (%)	1708,1 ± 746,5	1867 ± 709,0	3146,9± 5524,9	1876,7 ± 815,3	0,004
Mono (%)	597,5 ± 336,5	501,1 ± 281,5	513,8 ± 142,3	482,9 ± 183,2	0,761
Eos (%)	75,53 ± 52,97	153,6 ± 170,6	229,9 ± 250,0	242,9 ± 243,3	0,072
Baso (%)	51,35 ± 61,63	53,42 ± 83,16	27,41 ± 20,87	24,54 ± 35,13	<0,001
Plaquetas (x10 ⁹ /L)	229,00 ± 81,50	237,8 ± 63,87	257,5 ± 74,18	265,14 ± 64,2	0,524
VPM (fL)	8,86 ± 2,35	8,87 ± 1,368	8,445,0 ± 1,067	7,900 ± 1,31	0,286

Tabela 22. Distribuição pelo tipo de nutrição e dados bioquímicos das gestantes atendidas no Instituto da Mulher Dona Lindu

DADOS BIOQUIMICOS	Parenteral	Leite Materno	Fórmula Láctea	Enteral	p- value
Ureia (mg/dL)	19,99 ± 7,127	19,06 ± 5,59	17,53 ± 5,47	18,80 ± 6,88	0,682
Creatinina(mg/dL)	$0,6725 \pm 0,6196$	0,7077 ± 0,15	$0,7350 \pm 0,15$	$0,7950 \pm 0,52$	0,308
Bilirrubina Direta(mg/dL)	0,2833 ± 0,161	0,1703 ± 0,25	0,1200 ± 0,48	0,1250 ± 0,21	0,867
Bilirrubina Indireta(mg/dL)	$0,4133 \pm 0,52$	$0,2043 \pm 0,23$	$0,090 \pm 0,071$	0,1150 ± 0,1626	0,392
Bilirrubina Total (mg/dL)	0,6967 ± 0,687	$0,3745 \pm 0,40$	$0,2100 \pm 0,08$	0,2400 ± 0,141	0,453
Glicose (mg/dl)	$76,93 \pm 6,00$	82,08 ± 16,63	73,21 ± 11,65	68,00 ± 2586,7	0,304
Triglicerideos (mg/dL)	251,7 ± 92,16	224,4 ± 85,94	244,8 ± 92,24	237,4 ± 171,5	0,388
HDL (mg/dL)	40,64 ± 8,99	48,79 ± 16,5	47,38 ± 16,11	56,75 ± 19,19	0,383
Colesterol(mg/dL)	179,44 ± 78,15	177,7 ± 59,23	178,7 ± 64,89	164,75 ± 76,27	0,894
DHL (µ/l)	329,5 ± 131,4	384,4 ± 171,0	408,48 ± 132,0	404,1 ± 118,3	0,670
Ferro (mcg/dL)	$180,2 \pm 240,3$	97,90 ± 102,0	371,0 ± 2,78	140,4 ± 35,13	0,033

TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF

6.12. Associação de dados hematológicos e bioquímicos entre gestantes e RNs quanto à classificação racial do ao tipo de nutrição do Instituto da Mulher Dona Lindu ,Manaus-Amazonas-Março 2014 a Janeiro/2015

Tabela 23. - Distribuição pela classificação racial e dados hematológicos entre gestantes e RNs do Instituto da Mulher Dona Lindu

				T
DADOS HEMATOLÓGICOS	Parda	Branca	Negra	p-value
RBC x 10 ⁶ /mm ³	4,28 ± 0,457	4,28 ± 0,351	4,528 ± 0,729	0,412
HB (g/dl)	12,42 ± 1,40	12,40 ± 1,3	12,88 ± 2,34	0,729
HT (%)	38,60 ± 4,51	38,58 ± 3,7	38,63 ± 4,45	0,446
VCM (fL)	90,31 ± 6,8	90,07 ± 6,43	90,0 ± 4,95	0,964
HCM (pg)	29,08 ± 2,3	28,94 ± 2,48	28,37 ± 1,55	0,705
CHCM (pg)	32,22 ± 1,3	32,12 ± 1,73	31,543 ± 1,127	0,475
RDW (%)	14,06 ± 1,35	13,80 ± 0,92	14,35 ± 0,85	0,304
WBC (x10 ⁹ /mm ³)	12,47 ± 3,70	12,68 ± 3,6	14,043 ± 2,13	0,549
Seg(%)	9516 ± 363	9913 ± 361	11248 ± 2482	0,393
Linf (%)	1988 ± 159	1773 ± 576,7	1801,04± 585	0,558
Mono(%)	504,7 ± 255	507,88 ± 355,9	509,48±140,3	0,996
Eos(%)	167,60 ± 184	120,41 ± 122,5	79,215±73,49	0,083
Baso (%)	58,95 ± 111	58,94 ± 75,45	88,19±92,88	0,800
Plaquetas (x10 ⁹ /L)	237,2 ± 66,8	243,7 ± 60,48	299,0 ± 77,24	0,066
Volume Plaquetário Médio (fL)	8,82 ± 1,454	9,02 ± 1,401	7,68 ± 0,86	0,085

Tabela 24. - Distribuição pela classificação racial e dados bioquímicos entre gestantes e RNs do Instituto da Mulher Dona Lindu

Parda	Branca	Negra	p-value
19,06 ± 5,67	19,11 ± 6,08	19,38 ± 7,95	0,991
0,71 ± 0,15	0,70 ± 0,151	0,72 ± 0,16	0,874
0,17 ± 0,25	0,12 ± 0,047	0,15 ± 0,01	0,773
0,22 ± 0,26	0.08 ± 0.06	0,18 ± 0,04	0,154
0,39 ± 0,42	0,21 ± 0,804	$0,33 \pm 0,03$	0,264
81,29 ± 16,5	76,03 ± 15,22	81,100 ± 12,7	0,467
226,44 ± 84,7	203,59 ± 75,3	282,2 ± 145,9	0,287
47,99 ± 17,1	46,6 ± 12,18	71,25 ± 22,68	0,003
44,06 ± 27,7	42,6 ± 19,88	24,00 ± 22,68	0,763
173,27 ± 60,8	185,6 ± 62,02	207,5 ± 57,27	0,511
110,54 ± 38,8	126,2 ± 46,15	20,0 ± 22,68	0,116
391,71 ± 176	369,8 ± 141,6	336,1 ± 86,47	0,579
103,66 ± 110	78,71 ± 86,18	46,36 ± 2,78	0,612
102,34 ± 64,0	79,85 ± 46,19	129,83 ± 0,75	0,450
218,95 ± 141	155,091 ± 131	231,00 ± 1,43	0,505
485,80 ± 153	455,00 ± 76,36	313,00 ± 3,65	0,550
	$19,06 \pm 5,67$ $0,71 \pm 0,15$ $0,17 \pm 0,25$ $0,22 \pm 0,26$ $0,39 \pm 0,42$ $81,29 \pm 16,5$ $226,44 \pm 84,7$ $47,99 \pm 17,1$ $44,06 \pm 27,7$ $173,27 \pm 60,8$ $110,54 \pm 38,8$ $391,71 \pm 176$ $103,66 \pm 110$ $102,34 \pm 64,0$ $218,95 \pm 141$	19,06 \pm 5,6719,11 \pm 6,080,71 \pm 0,150,70 \pm 0,1510,17 \pm 0,250,12 \pm 0,0470,22 \pm 0,260,08 \pm 0,060,39 \pm 0,420,21 \pm 0,80481,29 \pm 16,576,03 \pm 15,22226,44 \pm 84,7203,59 \pm 75,347,99 \pm 17,146,6 \pm 12,1844,06 \pm 27,742,6 \pm 19,88173,27 \pm 60,8185,6 \pm 62,02110,54 \pm 38,8126,2 \pm 46,15391,71 \pm 176369,8 \pm 141,6103,66 \pm 11078,71 \pm 86,18102,34 \pm 64,079,85 \pm 46,19218,95 \pm 141155,091 \pm 131485,80 \pm 153455,00 \pm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.13 Características clínicas dos Recém-Nascidos do Instituto da Mulher Dona Lindu

Os recém-nascidos apresentaram distribuição de 53,4%(440) para o gênero masculino e 46,6%(385) para o gênero feminino. Quanto ao tipo de parto, 52,3%(429) nasceram de parto normal enquanto que 47,7%(391) de parto cesárea. Entre estes, 19,4%(160) foram prematuros enquanto que 80,6%(660) foram a termo. A nutrição administrada aos RNs foi leite materno (80,3%), fórmula láctea (6,4%), parenteral (2,8%) e enteral (2,4%). A média do peso para o perfil FAA foi de 3257,15g, FAS 3168,76g e FAD de 3433,37g. Com relação ao pré-natal, 88%(722) gestantes reportaram que fizeram enquanto que 12%(98) não realizaram. Quanto à classificação racial, observamos o predomínio da raça parda com distribuição de 81,2%(670) seguidos da raca branca com 16,4%(135), e 2,4%(20) para a raça negra. Entre os recém-nascidos portadores de hemoglobinas anormais observamos o predomínio da raça parda. Quanto às internações na utineonatal (UTINEO), 91,7%(756) não apresentaram intercorrências neonatais e entre os tipos de nutrição, 80,3%(729) receberam leite materno, seguidos da fórmula láctea com 6,4%(53), enquanto as parenterais e enterais foram 2,8%(23) e 1,5%(20) respectivamente. Quanto à Distribuição dos tipos de hemoglobinas obtidos através da Cromatografia Líquida de Alta Performance-HPLC nos recémnascidos, a prevalência total encontrada para hemoglobinas variantes foi de 2,7%(22), nos quais 2%(16) para o Traço Falciforme, com fenótipo FAS; 0,7%(6) para Traço de Hemoglobina D, com fenótipo FAD, e 97%(803) com perfil hemoglobínico normal FAA (Tabela 25).

Tabela 25. Distribuição dos tipos de hemoglobinas em Recém-Nascidos do Instituto da Mulher Dona Lindu, Manaus-Amazonas.

	HPLC			
Período(mês)	N	%		
AA	803	97%		
AS	16	2,0%		
AD	6	0,7%		
Total	825	100,0		

6.14. Associação entre os dados hematológicos e bioquímicos dos RNs e a DHEG do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

Tabela 26. Análise dos dados hematológicos de RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a janeiro/2015.

DADOS HEMATOLÓGICOS DHEG MÉDIA ± DP p-value RBC x 106/mm³ Sim 4,47 0,84 0,670 HB (g/dL) Não 4,57 0,59 0,814 HB (g/dL) Não 15,75 2,07 0,814 HT(%) Sim 52,47 8,28 0,826 VCM (fL) Sim 51,87 6,93 0,826 VCM (fL) Sim 35,7 1,30 0,826 HCM Sim 35,7 1,30 0,252 HCM Não 34,4 2,32 0,152 CHCM Não 30,4 2,52 0,910 RDW Não 16,35 1,69 0,917 WBC Sim 10017,1 3547,6 0,910 WBC Sim 10017,1 3547,6 0,917 WBC Sim 5722,1 3168,02 0,811 BAST(%) Não 12937,8 4837,9 0,811 BAST(%)		ı	Г	Т	Т	
RBC x 10°/mm³ Não 4,57 0,59 0,670 HB (g/dL) Sim 15,94 2,66 0,814 HT(%) Sim 15,75 2,07 0,814 HT(%) Sim 52,47 8,28 0,826 VCM (fL) Sim 117,8 5,67 0,252 HCM Não 113,6 9,54 0,252 HCM Sim 36,7 1,30 0,152 CHCM Não 34,4 2,32 0,910 RDW Não 30,3 1,26 0,910 RDW Não 16,35 1,69 0,917 WBC Sim 10017,1 3547,6 0,917 WBC Sim 10017,1 3547,6 0,917 WBC Não 12937,8 4837,9 0,811 BAST(%) Não 6047,3 3528,74 0,811 BAST(%) Não 5,07 40,4 0,791 LINF(%) Não <	DADOS HEMATOLÓGICOS	DHEG	MÉDIA	± DP	p-value	
HB (g/dL)	DDC v 106/mm3	Sim	4,47	0,84	0.670	
Não 15,75 2,07 0,814	RBC X 10%mm°	Não	4,57	0,59	0,670	
HT(%)		Sim	15,94	2,66	0.014	
Não 51,87 6,93 0,826 VCM (fL) Sim 117,8 5,67 0,252 HCM Sim 35,7 1,30 0,152 CHCM Sim 30,3 1,26 0,910 RDW Sim 16,28 1,04 0,917 RDW Não 16,35 1,69 0,917 WBC Sim 10017,1 3547,6 0,116 SEG(%) Sim 5722,1 3168,02 0,811 BAST(%) Sim 5722,1 3168,02 0,811 BAST(%) Sim 1,00 0,354 0,791 LINF(%) Sim 3534,7 1925,1 0,111 MONO(%) Sim 351,9 315,5 0,111 MONO(%) Sim 511,9 315,5 0,183 EOS(%) Não 348,8 425,7 0,174 BASO(%) Não 131,8 161,4 0,833 PLT Não 221,4	nb (g/aL)	Não	15,75	2,07	0,814	
VCM (fL) Sim 117,8 5,67 Não 113,6 9,54 113,6 9,54 0,252 HCM Sim 35,7 1,30 0,152 0,152 CHCM Sim 30,3 1,26 Não 30,4 2,52 0,910 0,910 RDW Sim 16,28 1,04 Não 16,35 1,69 0,917 0,917 WBC Sim 10017,1 3547,6 Não 12937,8 4837,9 0,116 0,116 SEG(%) Sim 5722,1 3168,02 Não 6047,3 3528,74 0,811 0,811 BAST(%) Sim 1,00 0,354 Não 5,07 40,4 0,791 0,791 LINF(%) Sim 3534,7 1925,1 Não 5518,4 3244,4 0,111 0,111 MONO(%) Sim 511,9 315,5 Não 886,3 737,1 0,111 0,183 EOS(%) Não 348,8 425,7 Não 348,8 425,7 Não 348,8 425,7 Não 131,8 161,4 Não 221,4 75,93 Não 131,8 161,4 Não 221,4 75,93 Não 221,4 75,93 Não 9,92 1,41 Não 9,853 Não 1,81 Não 1,92	<u></u> ЦТ/0/\	Sim	52,47	8,28	0.006	
VCM (IL) Não 113,6 9,54 0,252 HCM Sim 35,7 1,30 0,152 CHCM Sim 30,3 1,26 0,910 RDW Não 30,4 2,52 0,910 RDW Sim 16,28 1,04 0,917 WBC Sim 16,35 1,69 0,917 WBC Sim 10017,1 3547,6 0,916 WBC Sim 10017,1 3547,6 0,116 SEG(%) Não 12937,8 4837,9 0,116 SEG(%) Não 6047,3 3528,74 0,811 BAST(%) Não 6047,3 3528,74 0,811 BAST(%) Não 5,07 40,4 0,791 LINF(%) Sim 3534,7 1925,1 0,111 MONO(%) Sim 511,9 315,5 0,183 EOS(%) Não 886,3 737,1 0,183 EOS(%) Não	П1(%)	Não	51,87	6,93	0,826	
HCM	\/CN/I /fl \	Sim	117,8	5,67	0.050	
CHCM Não 34,4 2,32 0,152 CHCM Sim 30,3 1,26 0,910 RDW Sim 16,28 1,04 0,917 WBC Sim 10017,1 3547,6 0,116 Não 12937,8 4837,9 0,116 SEG(%) Sim 5722,1 3168,02 0,811 BAST(%) Sim 1,00 0,354 0,791 LINF(%) Sim 3534,7 1925,1 0,111 MONO(%) Sim 5518,4 3244,4 0,111 MONO(%) Sim 511,9 315,5 0,183 EOS(%) Não 886,3 737,1 0,183 EOS(%) Não 348,8 425,7 0,174 BASO(%) Não 131,8 161,4 0,833 PLT Não 253,5 95,14 0,279 VPM(%) Sim 10,02 1,14 0,853 RET(%) Não 2,87	V CIVI (IL)	Não	113,6	9,54	0,252	
CHCM Sim 30,3 1,26 Não 30,4 2,52 RDW Sim 16,28 1,04 Não 16,35 1,69 WBC Sim 10017,1 3547,6 Não 12937,8 4837,9 Sim 5722,1 3168,02 Não 6047,3 3528,74 Não 5,07 40,4 LINF(%) Sim 3534,7 1925,1 Não 5518,4 3244,4 MONO(%) Sim 511,9 315,5 Não 886,3 737,1 MONO(%) Sim 128,4 89,38 Não 348,8 425,7 BASO(%) Sim 118,7 99,2 Não 131,8 161,4 PLT Sim 253,5 95,14 Não 9,92 1,41 Não 9,92 1,41 Não 9,92 1,41 Sim 2,96 0,62 Não 2,87 0,98 0,813	LICM	Sim	35,7	1,30	0.150	
CHCM Sim Não 30,4 2,52 30,910 0,910 RDW Sim 16,28 1,04 Não 16,35 1,69 10,917 0,917 WBC Sim 10017,1 3547,6 Não 12937,8 4837,9 10,116 0,116 SEG(%) Sim 5722,1 3168,02 Não 6047,3 3528,74 10,00 0,811 BAST(%) Sim 1,00 0,354 Não 5,07 40,4 10,791 0,791 LINF(%) Sim 3534,7 1925,1 Não 5518,4 3244,4 10,111 0,111 MONO(%) Sim 511,9 315,5 Não 886,3 737,1 10,183 0,183 EOS(%) Sim 128,4 89,38 Não 348,8 425,7 10,174 0,174 BASO(%) Sim 118,7 99,2 Não 131,8 161,4 161,	ПСІИІ	Não	34,4	2,32	0,152	
RDW Sim 16,28 1,04 0,917	CHCM	Sim	30,3		0.010	
Não 16,35 1,69 0,917 WBC Sim 10017,1 3547,6 0,116 SEG(%) Sim 5722,1 3168,02 0,811 BAST(%) Sim 1,00 0,354 0,791 LINF(%) Sim 3534,7 1925,1 0,111 MONO(%) Sim 5518,4 3244,4 0,111 MONO(%) Sim 511,9 315,5 0,183 EOS(%) Não 886,3 737,1 0,183 EOS(%) Sim 128,4 89,38 0,174 BASO(%) Não 348,8 425,7 0,174 BASO(%) Não 131,8 161,4 0,833 PLT Sim 253,5 95,14 0,279 VPM(%) Sim 10,02 1,14 0,853 RET(%) Não 2,87 0,98 0,813	CHCIVI	Não	30,4	2,52	0,910	
WBC Sim 10017,1 3547,6 0,116 SEG(%) Sim 5722,1 3168,02 0,811 BAST(%) Sim 1,00 0,354 0,791 LINF(%) Sim 3534,7 1925,1 0,111 MONO(%) Sim 5518,4 3244,4 0,111 MONO(%) Sim 511,9 315,5 0,183 EOS(%) Não 886,3 737,1 0,183 EOS(%) Sim 128,4 89,38 0,174 BASO(%) Não 348,8 425,7 0,833 PLT Sim 118,7 99,2 0,833 PLT Não 253,5 95,14 0,279 VPM(%) Sim 10,02 1,14 0,853 RET(%) Não 2,87 0,98 0,813	DDW	Sim	16,28	1,04	0.017	
Não 12937,8 4837,9 0,116 SEG(%) Sim 5722,1 3168,02 0,811 BAST(%) Sim 1,00 0,354 0,791 LINF(%) Sim 3534,7 1925,1 0,111 MONO(%) Sim 511,9 315,5 0,183 EOS(%) Não 886,3 737,1 0,183 EOS(%) Sim 128,4 89,38 0,174 BASO(%) Não 348,8 425,7 0,833 PLT Sim 118,7 99,2 0,833 PLT Não 131,8 161,4 0,279 VPM(%) Sim 10,02 1,14 0,853 Não 9,92 1,41 0,853 Sim 2,96 0,62 Não 2,87 0,98 0,813	KDW	Não	16,35	1,69	0,917	
SEG(%) Sim 5722,1 3168,02 0,811 BAST(%) Sim 1,00 0,354 0,791 LINF(%) Sim 3534,7 1925,1 0,111 MONO(%) Sim 511,9 315,5 0,183 EOS(%) Não 886,3 737,1 0,174 EOS(%) Sim 128,4 89,38 0,174 BASO(%) Sim 118,7 99,2 0,833 PLT Sim 253,5 95,14 0,279 VPM(%) Sim 10,02 1,14 0,853 RET(%) Não 2,96 0,62 0,813	\MPC	Sim	10017,1	3547,6	0.446	
Não 6047,3 3528,74 0,811	WBC	Não	12937,8	4837,9	0,116	
BAST(%) Sim 1,00 0,354 0,791 LINF(%) Sim 3534,7 1925,1 0,111 MONO(%) Sim 511,9 315,5 0,183 EOS(%) Não 886,3 737,1 0,183 EOS(%) Sim 128,4 89,38 0,174 Não 348,8 425,7 0,174 BASO(%) PLT Sim 253,5 95,14 0,279 VPM(%) Sim 10,02 1,14 0,853 Sim 2,96 0,62 Não 2,87 0,98 0,813	SEC(0/)	Sim	5722,1	3168,02	0.011	
Não 5,07 40,4 0,791 1	SEG(%)	Não	6047,3	3528,74	0,611	
LINF(%) Sim 3534,7 1925,1 Não 5518,4 3244,4 MONO(%) Sim 511,9 315,5 Não 886,3 737,1 EOS(%) Sim 128,4 89,38 Não 348,8 425,7 Sim 118,7 99,2 Não 131,8 161,4 PLT Sim 253,5 95,14 Não 221,4 75,93 VPM(%) Sim 10,02 1,14 Não 9,92 1,41 Sim 2,96 0,62 Sim 2,96 0,62 RET(%) Não 2,87 0,98 0,813	D A CT/0/ \	Sim	1,00	0,354	0.701	
Não 5518,4 3244,4 0,111	DAST(%)	Não	5,07	40,4	0,791	
MONO(%) Sim 511,9 315,5 0,183	LINIE/O/\	Sim	3534,7	1925,1	0.111	
MONO(%) Não 886,3 737,1 0,183 EOS(%) Sim 128,4 89,38 0,174 BASO(%) Sim 118,7 99,2 0,833 PLT Sim 253,5 95,14 0,279 VPM(%) Sim 10,02 1,14 0,853 Não 9,92 1,41 0,853 Sim 2,96 0,62 Não 2,87 0,98 0,813	LIINF (70)	Não	5518,4	3244,4	0,111	
EOS(%) Sim 128,4 89,38 Não 348,8 425,7 0,174 BASO(%) Sim 118,7 99,2 0,833 Não 131,8 161,4 0,833 PLT Sim 253,5 95,14 0,279 VPM(%) Sim 10,02 1,14 0,853 Não 9,92 1,41 0,853 Sim 2,96 0,62 0,813 RET(%) Não 2,87 0,98 0,813	MONO(0/)	Sim	511,9	315,5	0.402	
Não 348,8 425,7 0,174	MONO(%)	Não	886,3	737,1	0,103	
Não 348,8 425,7 BASO(%) Sim 118,7 99,2 Não 131,8 161,4 0,833 PLT Sim 253,5 95,14 Não 221,4 75,93 0,279 VPM(%) Sim 10,02 1,14 0,853 Não 9,92 1,41 0,853 Sim 2,96 0,62 Não 2,87 0,98 0,813	EOS(0/)	Sim	128,4	89,38	0.474	
PLT Não 131,8 161,4 0,833	EU3(%)	Não	348,8	425,7	0,174	
PLT Sim 253,5 95,14 0,279 VPM(%) Sim 10,02 1,14 0,853 RET(%) Não 2,87 0,98 0,813	DASO(0/)	Sim	118,7	99,2	0,833	
Não 221,4 75,93 0,279 VPM(%) Sim 10,02 1,14 0,853 Não 9,92 1,41 0,853 Sim 2,96 0,62 Não 2,87 0,98 0,813	DASO(70)	Não	131,8	161,4		
VPM(%) Sim 10,02 1,14 0,853 Não 9,92 1,41 0,853 Sim 2,96 0,62 Não 2,87 0,98 0,813	ד וח	Sim	253,5	95,14	0,279	
Não 9,92 1,41 0,853 Sim 2,96 0,62 RET(%) Não 2,87 0,98 0,813	F LI	Não	221,4	75,93		
Nao 9,92 1,41	\/DN//0/\	Sim	10,02	1,14	0.853	
RET(%) Não 2,87 0,98 0,813	V F IVI(70)	Não	9,92	1,41	U,000	
` '		Sim	2,96	0,62		
Não 137,6 102,58	RET(%)	Não	2,87	0,98	0,813	
		Não	137,6	102,58		

Tabela 27. Análise dos dados bioquímicos de RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	DHEG	MÉDIA	± DP	p-value
UREIA	Sim	18,12	4,93	0.494
UREIA	Não	19,29	5,45	0,484
CREA	Sim	0,70	0,24	0,825
UNEA	Não	1,02	4,93	0,823
GGT	Sim	86,87	33,35	0,694
	Não	77,24	68,74	0,094
BT	Sim	1,65	0,18	0,891
DI	Não	1,75	1,64	0,691
BI	Sim	2,28	0,385	0,934
DI	Não	2,21	1,68	
GLICOSE	Sim	92,90	27,2	0,766
GLICOSE	Não	85,52	24,51	
TRIGLICERIDEOS	Sim	36,11	19,36	0,947
IRIGLICERIDEOS	Não	36,66	28,1	0,947
HDL	Sim	39,29	9,25	0,783
	Não	38,14	14,2	0,763
DHL	Sim	1002,4	554,3	0.520
DUL	Não	1109,5	575,4	0,530
FERRO	Sim	69,87	41,1	0.201
FERRO	Não	105,34	66,0	0,291
FERRITINA	Sim	50,66	28,6	0.002
FERRIIINA	Não	86,1	41,18	0,093
TRANSFERRINA	Sim	132,0	104,12	
ANISTERRINA	Não	137,6	102,58	0,958

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

.

6.15. Associação entre os dados hematológicos e bioquímicos dos RNs e o tipo de parto do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

Tabela 28. Análise dos dados hematológicos do tipo de parto e RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	TIPO PARTO	MÉDIA	± DP	p-value
	NORMAL	4,51	0,61	0.007
RBC x 10 ⁶ /mm ³	CESÁREA	4,50	0,64	0,937
LID //-II \	NORMAL	15,66	2,14	0.440
HB (g/dL)	CESÁREA	15,43	2,26	0,418
LIT(0/)	NORMAL	51,56	6,88	0.574
HT(%)	CESÁREA	51,05	7,33	0,571
\/CN4 /fL\	NORMAL	114,7	10,1	0.204
VCM (fL)	CESÁREA	113,5	8,7	0,294
HCM	NORMAL	34,7	2,10	0.074
ПСІИІ	CESÁREA	34,2	2,21	0,074
CHCM	NORMAL	30,46	2,58	0,489
CHCIVI	CESÁREA	30,26	1,47	
RDW	NORMAL	16,37	1,80	0,403
KDW	CESÁREA	16,21	1,05	
WBC	NORMAL	12491,5	4801,3	0,425
WDC	CESÁREA	12968,2	4499,8	0,425
SEG(%)	NORMAL	5454,2	3792,7	0,824
3EG(70)	CESÁREA	5558,9	3523,9	0,024
INE/0/ \	NORMAL	5652,8	3209,1	0,397
LINF(%)	CESÁREA	6014,3	3360,4	0,397
MONO(%)	NORMAL	868,4	631,3	0,530
WONO(70)	CESÁREA	822,5	473,5	0,550
EOS(%)	NORMAL	349,2	482,05	0,639
LO3(70)	CESÁREA	321,0	452,8	0,039
BASO(%)	NORMAL	157,7	168,5	0,076
DAGO(70)	CESÁREA	121,7	142,1	0,070
PLT	NORMAL	224,7	84,2	0,223
	CESÁREA	236,8	67,5	0,223
VPM	NORMAL	10,0	1,45	0,010
V I IVI	CESÁREA	9,5	1,29	0,010
RETICULOCITOS(%)	NORMAL	2,96	0,968	0,795
	CESÁREA	2,93	0,969	0,795

WBC-Leucócitos; RBC-Hemácias; Hb-Hemoglobina; Ht-Hematócrito; VCM – Volume corpuscular médio; HCM – Hemoglobina corpuscular média; CHCM – Concentração de hemoglobina corpuscular média; RDW – Amplitude de distribuição dos eritrócitos; PLT-Plaquetas; VPM-Volume Plaquetário Médio, SEG-Segmentados; LINF-Linfócitos; MONO-Monócitos; EOS-Eosinófilos; BASO-Basófilos.

Tabela 29. Análise dos dados bioquímicos do tipo de parto e RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

		Γ	Т	
DADOS BIOQUÍMICOS	TIPO PARTO	MÉDIA	± DP	
UREIA	NORMAL	19,44	5,26	0,545
UNEIA	CESÁREA	19,83	6,6	0,545
CREATININA	NORMAL	1,02	4,98	0,385
CREATININA	CESÁREA	0,67	0,23	0,365
GGT	NORMAL	80,6	79,02	0,009
	CESÁREA	61,2	42,38	0,009
ВІ	NORMAL	2,40	2,69	0,085
	CESÁREA	1,78	0,66	0,065
ВТ	NORMAL	1,93	2,50	0,089
	CESÁREA	1,37	0,58	0,069
GLICOSE	NORMAL	76,46	14,6	0,211
	CESÁREA	81,91	26,8	0,211
TRIGLICERIDEOS	NORMAL	39,4	36,9	0,318
INIGLICENIDEOS	CESÁREA	44,06	50,78	0,316
HDL	NORMAL	37,09	13,3	0,332
TIDL	CESÁREA	38,3	11,6	0,332
DHL	NORMAL	1112,46	638,2	0,006
	CESÁREA	949,19	431,6	0,000
FERRO	NORMAL	96,26	56,47	0,025
FERRO	CESÁREA	119,7	68,18	0,023
FERRITINA	NORMAL	94,61	54,38	0,140
FERRIIINA	CESÁREA	80,63	37,7	0,140
TRANSFERRINA	NORMAL	94,6	54,3	0,318
	CESÁREA	80,6	37,7	0,510

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.16 Associação entre os dados hematológicos e bioquímicos dos RNs e parto prematuro do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

Tabela 30. Análise dos dados hematológicos em partos prematuros de recémnascidos do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	PARTO PREMATURO	MÉDIA	± DP	p-value
DDC v 406/mm3	Sim	4,48	0,47	0.260
RBC x 10 ⁶ /mm ³	Não	4,57	0,63	0,260
LID (a/dl)	Sim	15,56	1,87	0,952
HB (g/dL)	Não	15,75	2,18	0,952
UT (0/)	Sim	51,71	5,63	0.053
HT (%)	Não	51,77	7,13	0,952
VCM (fL)	Sim	115,4	6,98	0,117
VCIVI (IL)	Não	113,5	9,70	0,117
HCM	Sim	34,7	2,22	0.475
HCIVI	Não	34,5	2,42	0,475
CHCM	Sim	30,1	1,62	0.105
CHCIVI	Não	30,5	2,43	0,185
RDW	Sim	16,44	1,12	0,284
KDW	Não	16,22	1,68	
WBC	Sim	11844,6	4645,2	0.052
VVDC	Não	12983,2	4451,5	0,052
CEC (0/)	Sim	4231,7	2878,9	0.002
SEG (%)	Não	5633,1	3603,8	0,002
DACT (0/)	Sim	2,77	3988,7	0.511
BAST (%)	Não	6,26	3253,7	0,511
LINE (0/)	Sim	6333	3988,7	0,396
LINF (%)	Não	5953	3253,7	0,396
MONO (0/)	Sim	726,3	452,8	0.020
MONO (%)	Não	894,9	660,2	0,039
EOS (%)	Sim	221,1	242,1	0,021
EOS (%)	Não	345,4	448,0	0,021
DASO (0/)	Sim	1,28	1,38	0.751
BASO (%)	Não	1,22	1,29	0,751
DLT	Sim	216,7	79,4	0.110
PLT	Não	233,3	78,7	0,110
\/DM (0/ \	Sim	9,70	1,33	0.610
VPM (%)	Não	9,79	1,36	0,619
DET (0/)	Sim	2,7	0,90	0.207
RET (%)	Não	2,8	1,00	0,207

WBC-Leucócitos; RBC-Hemácias; Hb-Hemoglobina; Ht-Hematócrito; VCM – Volume corpuscular médio; HCM – Hemoglobina corpuscular média; BAST-bastão; CHCM – Concentração de hemoglobina corpuscular média; RDW – Amplitude de distribuição dos eritrócitos; PLT-Plaquetas; VPM-Volume Plaquetário Médio, SEG-Segmentados; LINF-Linfócitos; MONO-Monócitos; EOS-Eosinófilos; BASO-Basófilos.

Tabela 31. Análise dos dados bioquímicos em partos prematuros de RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	PARTO PREMATURO	MÉDIA	± DP	p-value
UREIA	Sim	19,5	6,27	0,783
UNLIA	Não	19,3	5,62	0,765
CREA	Sim	0,66	0,25	0,500
	Não	0,96	4,34	0,000
GGT	Sim	76,2	56,6	0,597
	Não	72,4	64,4	0,007
ВТ	Sim	2,07	2,59	0,410
	Não	1,76	2,09	0,410
BI	Sim	2,53	2,62	0,420
	Não	2,22	2,23	0,420
GLICOSE	Sim	83,3	27,2	0,604
<u> </u>	Não	80,8	21,4	0,004
TDICLICEDIDECC	Sim	32,97	23,5	0,133
TRIGLICERIDEOS	Não	39,04	38,6	
HDL	Sim	37,25	14,49	0,446
	Não	38,34	12,36	0,440
DHL	Sim	1011,9	546,8	0,230
DI IL	Não	1092,9	603,4	0,230
FERRO	Sim	104,7	546,8	0,842
	Não	1077,4	615,7	0,012
FERRITINA	Sim	84,2	49,9	0.242
FERRITINA	Não	93,6	53,00	0,342
TRANSFERRINA	Sim	155,5	123,8	0,230
	Não	127,7	86,16	
CTLF	Sim	467,0	85,24	0,042
4 1 — 1	Não	380,0	86,34	

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Billirrubina Direta; BI-Billirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.17. Associação entre os dados hematológicos e bioquímicos dos RNs e a anemia na família do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

A associação entre dados hematológicos dos RNs quanto a anemia na família mostrou significância estatística para o valor de linfócitos (p=0,050) e para os dados bioquímicos, para a concentração de creatinina (p=0,014), bilirrubina total (0,005) e bilirrubina indireta (0,004).

6.18. Associação entre os dados hematológicos e bioquímicos dos RNs quanto ao gênero do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

A associação entre dados hematológicos e bioquímicos dos RNs quanto ao gênero não mostrou significância estatística, conforme mostra as tabelas 32 e 33.

Tabela 32. Análise dos dados hematológicos de RNs quanto ao gênero do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	SEXO	MÉDIA	± DP	p-value
RBC x 10 ⁶ /mm ³	MASC	4,57	0,59	0.216
RBC X 10°/IIIIII°	FEM	4,50	0,60	0,216
HP (a/dL)	MASC	15,66	2,20	0,922
HB (g/dL)	FEM	15,65	2,06	0,922
HT(%)	MASC	51,58	7,04	0,926
111 (70)	FEM	51,69	6,74	0,920
VCM (fL)	MASC	113,0	9,55	0,922
VCIVI (IL)	FEM	115,0	9,46	0,922
HCM	MASC	34,2	2,25	0.020
HCW	FEM	34,7	2,07	0,920
CHCM	MASC	30,41	1,97	0,553
CHCIVI	FEM	30,38	2,55	0,555
RDW	MASC	16,37	1,76	0.257
KDW	FEM	16,09	1,30	0,357
WBC	MASC	13133,5	4749,9	0.626
	FEM	12508,62	4369,3	0,636
SEG (%)	MASC	5324,1	3697,4	0,452
3LG (76)	FEM	5699,5	3548,0	0,432
LINF (%)	MASC	6313,5	3668,9	0,525
LIMI (78)	FEM	5515,0	2887,1	0,323
MONO (%)	MASC	924,0	697,4	0,493
10110 (78)	FEM	831,7	529,0	0,433
EOS (%)	MASC	354,3	472,1	0,168
	FEM	311,4	398,0	0,100
BASO (%)	MASC	152,0	169,5	0,527
BASO (78)	FEM	142,0	162,6	0,327
PLT	MASC	234,4	81,73	0,763
PLI	FEM	221,6	74,48	0,703
VPM	MASC	9,67	1,43	0,763
V F IVI	FEM	9,96	1,28	0,703
RETICULOCITOS (%)	MASC	2,82	0,944	0,233
ME 1100L001103 (70)	FEM	2,92	1,00	0,233

WBC-Leucócitos; RBC-Hemácias; Hb-Hemoglobina; Ht-Hematócrito; VCM – Volume corpuscular médio; HCM – Hemoglobina corpuscular média; CHCM – Concentração de hemoglobina corpuscular média; RDW – Amplitude de distribuição dos eritrócitos; PLT-Plaquetas; VPM-Volume Plaquetário Médio, SEG-Segmentados; LINF-Linfócitos; MONO-Monócitos; EOS-Eosinófilos; BASO-Basófilos.

Tabela 33. Análise dos dados bioquímicos de RNs quanto ao gênero do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	SEXO	MÉDIA	± DP	p-value
UREIA	MASC	19,44	5,87	0,932
UKEIA	FEM	19,42	5,69	0,932
CREATININA	MASC	0,87	3,89	0,797
CREATININA	FEM	0,93	3,65	0,797
GGT	MASC	73,82	63,08	0,631
GGT	FEM	70,98	63,85	0,031
BI	MASC	2,21	2,18	0,711
DI	FEM	2,33	2,50	0,711
BT	MASC	1,74	2,01	0.505
DI	FEM	1,90	2,46	0,595
CLICOCE	MASC	80,0	21,9	0,549
GLICOSE	FEM	82,6	27,6	
TRIGLICERIDEOS	MASC	38,01	36,3	0.466
INIGLICENIDEOS	FEM	40,5	42,0	0,466
HDL	MASC	37,3	11,52	0,071
HDL	FEM	39,3	11,6	0,071
DHL	MASC	1078,3	639,7	0.967
DΠL	FEM	1069,1	563,7	0,867
FERRO	MASC	104,38	67,7	0,927
FERRU	FEM	105,21	61,90	0,921
FERRITINA	MASC	93,69	59,57	0,461
LEUVIIINA	FEM	87,59	41,96	0,401
TRANSFERRINA	MASC	141,1	101,6	0.067
INANOFERRINA	FEM	106,6	67,08	0,067

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Billirrubina Direta; BI-Billirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.19. Associação entre os dados hematológicos e bioquímicos e a diabetes
dos RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a
Janeiro/2015.

A associação entre dados hematológicos e bioquímicos dos RNs quanto a diabetes não mostrou significância estatística conforme descrita nas tabelas 34 e 35.

Tabela 34. Análise dos dados hematológicos de RNs quanto à diabetes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	DIABETE	MÉDIA	± DP	p-value
RBC x 10 ⁶ /mm ³	Sim	4,74	0,59	0,656
KBC X 10-7111111-	Não	4,52	0,66	0,030
UP (a/dL)	Sim	16,20	1,69	0,771
HB (g/dL)	Não	15,68	2,46	0,771
UT/0/)	Sim	53,15	4,45	0,740
HT(%)	Não	51,24	8,00	0,740
VCM (fL)	Sim	112,0	1,37	0,838
V CIVI (IL)	Não	113,1	7,35	0,030
HCM	Sim	34,13	1,13	0.742
HCIVI	Não	34,67	2,28	0,742
CHCM	Sim	30,45	0,64	0,850
CHCIVI	Não	30,68	1,73	0,650
RDW	Sim	15,10	0,141	0,216
KDVV	Não	16,34	1,40	
WBC	Sim	12830,0	1173,7	0,922
	Não	12499,8	4738,2	0,922
SEG (%)	Sim	5763,9	2027,5	0,926
3LG (%)	Não	5995,6	3508,4	0,920
LINF (%)	Sim	4876,7	3842,1	0,920
LINE (70)	Não	5098,5	3063,8	0,920
MONO (%)	Sim	1210,2	494,5	0,553
WONO (78)	Não	868,1	804,4	0,333
EOS (%)	Sim	792,7	406,2	0,357
LO3 (%)	Não	433,76	541,6	0,337
BASO (%)	Sim	185,0	259,9	0,452
BASO (76)	Não	102,4	150,3	0,432
PLT	Sim	190,5	61,51	0,525
	Não	226,1	78,10	0,323
VPM	Sim	10,65	0,494	0,249
V F IVI	Não	9,60	1,26	0,243
RETICULÓCITOS(%)	Sim	2,42	1,301	0,493
RETICOLOCITOS(70)	Não	2,87	0,919	0,495

WBC-Leucócitos; RBC-Hemácias; Hb-Hemoglobina; Ht-Hematócrito; VCM – Volume corpuscular médio; HCM – Hemoglobina corpuscular média; CHCM – Concentração de hemoglobina corpuscular média; RDW – Amplitude de distribuição dos eritrócitos; PLT-Plaquetas; VPM-Volume Plaquetário Médio, SEG-Segmentados; LINF-Linfócitos; MONO-Monócitos; EOS-Eosinófilos; BASO-Basófilos.

Tabela 35. Análise dos dados bioquímicos de RNs quanto à diabetes do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	DIABETE	MÉDIA	± DP	p-value
UREIA	Sim	15,23	4,52	0,168
ONLIA	Não	19,79	5,62	0,100
CREATININA	Sim	0,640	0,360	0,854
CREATININA	Não	1,43	7,42	0,054
GGT	Sim	46,50	41,71	0,527
GGT	Não	81,23	76,84	0,321
BI	Sim	1,75	2,18	0,763
ы	Não	2,86	3,64	0,703
BT	Sim	1,30	2,01	0,763
ы	Não	2,33	3,37	
TRIGLICERIDEOS	Sim	18,33	3,214	0,233
INIGLICENIDEOS	Não	31,88	19,47	0,233
HDL	Sim	36,66	7,57	0,891
TIDE	Não	37,69	12,89	0,091
DHL	Sim	1139,1	541,6	0,932
DITL	Não	1173,2	682,4	0,932
FERRO	Sim	111,26	41,21	0,797
FERKU	Não	99,45	63,60	0,787
FERRITINA	Sim	62,70	44,83	0.287
FERRITINA	Não	95,5	42,20	0,287

GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BI-Bilirrubina Indireta; DHL-Desidrogenase Láctica.

6.20 Associação entre os dados hematológicos e bioquímicos dos RNs e o
pré-natal do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a
Janeiro/2015.

A associação entre dados hematológicos e bioquímicos dos RNs quanto ao prénatal não mostrou significância estatística conforme descrita nas tabelas 36 e 37.

Tabela 36. Análise dos dados hematológicos quanto ao pré-natal em RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	PRE-NATAL	MÉDIA	± DP	p-value
RBC x 10 ⁶ /mm ³	Sim	4,56	0,608	0,942
	Não	4,55	0,515	0,942
	Sim	15,74	2,06	0,643
HB (g/dL)	Não	15,50	2,00	0,043
HT(%)	Sim	51,75	7,28	0,823
	Não	51,15	5,91	0,023
VCM (fL)	Sim	113,6	9,71	0,620
V CIVI (IL)	Não	114,8	9,65	0,020
HCM	Sim	34,5	2,32	0.260
TICIVI	Não	34,0	2,35	0,369
CHCM	Sim	30,5	2,54	0.000
CHCIVI	Não	29,7	2,48	0,226
RDW	Sim	16,34	1,77	0,918
NDW	Não	16,38	1,25	
WBC	Sim	12788,9	4870,8	0,957
	Não	12724,4	3473,5	0,937
SEG(%)	Sim	6164,4	3543,8	0,275
3LG(78)	Não	5216,8	2683,0	0,273
LINF(%)	Sim	5314,6	2976,2	0,220
LIINI (70)	Não	6260,2	3833,5	0,220
MONO(%)	Sim	838,2	612,2	0,769
IVIOINO(70)	Não	794,4	442,2	0,709
EOS(%)	Sim	339,4	423,9	0,414
LO3(70)	Não	256,8	144,2	0,414
BASO(%)	Sim	126,4	156,43	0,093
DAGO(70)	Não	194,6	200,1	0,093
PLT	Sim	226,5	77,28	0,316
PLI	Não	206,5	79,82	0,310
VPM	Sim	9,92	1,43	0,628
V F IVI	Não	10,10	1,43	0,020
RETICULOCITOS(%)	Sim	2,92	0,976	0,705
/ cite at DDC Hamfaires He	Não	2,61	1,089	0,700

WBC-Leucócitos; RBC-Hemácias; Hb-Hemoglobina; Ht-Hematócrito; VCM – Volume corpuscular médio; HCM – Hemoglobina corpuscular média; CHCM – Concentração de hemoglobina corpuscular média; RDW – Amplitude de distribuição dos eritrócitos; PLT-Plaquetas; VPM-Volume Plaquetário Médio, SEG-Segmentados; LINF-Linfócitos; MONO-Monócitos; EOS-Eosinófilos; BASO-Basófilos.

Tabela 37. Análise dos dados bioquímicos quanto ao pré-natal em RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	PRE- NATAL	MÉDIA	± DP	p-value	
LIDEIA	Sim	19,30	5,54	0.705	
UREIA	Não	18,82	4,56	0,705	
CREATININA	Sim	1,09	5,42	0.771	
CREATININA	Não	0,75	0,30	0,771	
GGT	Sim	76,87	69,68	0,315	
991	Não	93,06	65,81	0,315	
BI	Sim	2,49	2,90	0,449	
DI	Não	1,70	0,490	0,449	
ВТ	Sim	1,98	2,69	0.470	
DI	Não	1,30	0,49	0,479	
GLICOSE	Sim	85,90	25,4	0,866	
GLICOSE	Não	88,00	33,1	0,000	
TRIGLICERIDEOS	Sim	38,78	30,03	0,174	
IRIGLICERIDEOS	Não	29,7	14,59	0,174	
HDL	Sim	38,66	14,19	0,133	
ПИС	Não	33,74	13,58	0,133	
DHL	Sim	1133,3	612,2	0,993	
DHL	Não	1134,5	502,8	0,993	
FERRO	Sim	103,4	66,34	0.209	
FERRO	Não	126,7	64,68	0,298	
FERRITINA	Sim	79,13	41,97	0,114	
FERRITINA	Não	101,59	34,83	0,114	
TRANSFERRINA	Sim	141,78	108,4	0,340	
INANOFERMINA	Não	79,66	4,84	0,340	
CTLFERRO	Sim	433,3	86,01	0,340	
GILFERRO	Não	351,1	89,22	0,340	

GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Bilirrubina Direta; BI-Bilirrubina Indireta; TRIG-Triglicerídeos; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.21. Associação entre os dados hematológicos e bioquímicos dos RNs quanto a UTI do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

Tabela 38. Análise dos dados hematológicos quanto à UTI de RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS HEMATOLÓGICOS	UTI	MÉDIA	± DP	p-value	
DDC 406/m-m-3	Sim	3,89	0,88	<0,001	
RBC x 10 ⁶ /mm ³	Não	4,68	0,47	<0,001	
	Sim	13,28	3,44	<0,001	
HB (g/dL)	Não	16,10	1,74		
UT (0/ \	Sim	42,91	12,21	<0,001	
HT (%)	Não	52,70	5,72	<0,001	
VCM (fL)	Sim	109,0	11,74	0.065	
V CIVI (IL)	Não	112,8	9,51	0,065	
НСМ	Sim	33,82	2,47	0,214	
	Não	34,46	2,39		
CHCM	Sim	31,22	2,75	0,224	
CHCIVI	Não	30,64	2,21		
RDW	Sim	16,00	1,33	0,546	
עטא	Não	16,18	1,46	0,546	
WPC	Sim	12063,6	5077,0	0,358	
WBC	Não	12962,6	4418,4		
SEG (%)	Sim	4899,2	3343,1	0,223	
3EG (70)	Não	5834,3	3499,0		
LINF (%)	Sim	5973,16	4783,25	0,720	
LIINF (70)	Não	5713,26	3195,55	0,720	
MONO (%)	Sim	857,8	605,4	0,888	
IVIOINO (70)	Não	874,7	541,8	0,000	
EOS (%)	Sim	213,5	115,8	0,077	
£03 (<i>7</i> 0)	Não	377,4	431,7	0,077	
BASO (%)	Sim	118,6	138,1	0,895	
DASU (70)	Não	123,0	162,5	0,090	
PLT	Sim	252,8	90,24	0.060	
FLI	Não	233,4	77,58	0,260	
VPM	Sim	9,29	1,56	0.162	
V F IVI	Não	9,71	1,34	0,162	
ETICULOCITOS (%)	Sim	3,08	0,827	0,105	
	Não	2,71	0,902	0,105	

WBC-Leucócitos; RBC-Hemácias; Hb-Hemoglobina; Ht-Hematócrito; VCM – Volume corpuscular médio; HCM – Hemoglobina corpuscular média; CHCM – Concentração de hemoglobina corpuscular média; RDW – Amplitude de distribuição dos eritrócitos; PLT-Plaquetas; VPM-Volume Plaquetário Médio, SEG-Segmentados; LINF-Linfócitos; MONO-Monócitos; EOS-Eosinófilos; BASO-Basófilos.

Tabela 39. Análise dos dados bioquímicos quanto à UTI de RNs do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

DADOS BIOQUÍMICOS	UTI	MÉDIA	± DP	p-value
UREIA	Sim	21,94	7,16	0.176
UKEIA	Não	20,080	5,50	0,176
CREATININA	Sim	0,58	0,167	0.639
CREATININA	Não	1,21	5,64	0,628
GGT	Sim	91,24	77,32	0.404
GGT	Não	78,54	62,32	0,404
BI	Sim	4,21	5,96	0.224
ы	Não	2,71	2,76	0,224
BT	Sim	3,60	5,89	0.274
ы	Não	2,26	2,75	0,274
GLICOSE	Sim	108,9	16,05	0.017
	Não	79,57	20,75	0,017
TRIGLICERIDEOS	Sim	42,74	28,54	0.429
IRIGLICERIDEOS	Não	36,98	30,61	0,428
HDL	Sim	37,28	12,82	0,920
HDL	Não	36,95	14,09	0,920
DHL	Sim	1132,1	443,2	0,770
DHL	Não	1176,5	649,9	0,770
FERRO	Sim	106,26	68,02	0.762
FERRO	Não	97,42	63,74	0,762
FERRITINA	Sim	60,23	38,08	0.059
	Não	98,17	47,74	0,058
TRANSFERRINA	Sim	153,55	147,9	0.405
I KANSFEKKINA	Não	117,02	85,16	0,495

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Billirrubina Direta; BI-Billirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.22. Associação entre os dados hematológicos e bioquímicos dos RNs quanto ao tipo de nutrição do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

Tabela 40. Distribuição pelo tipo de nutrição e dados hematológicos dos recémnascidos do Instituto da Mulher Dona Lindu.

DADOS HEMATOLÓGICOS	Parenteral	LM	FL	Enteral	p-value
RBC x 10 ⁶ /mm ³	4,25 ± 0,38	4,58 ± 0,63	4,49 ± 0,67	4,92 ± 0,21	0,226
HB (g/dl)	14,61 ± 1,9	15,76 ± 2,23	15,50 ± 1,90	16,52 ± 0,75	0,418
HT (%)	47,83 ± 7,8	51,85 ± 6,99	51,98 ± 6,20	57,05 ± 5,10	0,187
VCM (fL)	111,8 ±11,2	113,6 ± 9,66	116,50 ±10,8	115,6 ± 5,66	0,191
HCM (pg)	34,26 ±2,58	34,45 ± 2,18	34,70 ± 3,06	$33,5 \pm 0,09$	0,718
CHCM (pg)	30,74 ±1,90	30,46 ± 2,46	29,82 ± 0,82	29,06 ± 1,40	0,245
RDW (%)	15,56 ±1,42	16,29 ± 1,70	16,21 ± 0,96	15,50 ± 0,20	0,368
WBC (x10 ⁹ /mm ³)	11603 ±5841	13048 ±4557	10952 ±3463	17987 ±2545	0,006
SEG (%)	4590,2±3636	5660,6±3678	4164,2±3101	1978,6± 279	0,004
BASTÃO (%)	1,1604 ±0,58	6,358 ±45,77	1,09 ± 0,34	1,79 ± 0,25	0,929
LINF (%)	5889,6±3425	5980,3±3292	5678,2±3043	14446± 2112	<0,001
MONO (%)	724,3 ±502,1	880,4 ±678,0	722,2 ±316,0	1128,5 ±15,5	0,663
EOS (%)	226,5 ±159,3	325,1 ±459,2	281,6 ±229,8	187,2 ±49,25	0,817
Baso (%)	171,7 ±165,2	147,3 ±164,8	104,40±120,1	245,0 ±87,77	0,064
Plaquetas (x109/L)	215,3 ±79,32	229,2 ±79,72	228,2 ±75,46	278,25 ±13,5	0,735
VPM (fL)	9,018 ±0,785	9,882 ±1,419	9,720 ±1,551	8,750 ±0,300	0,102
Reticulócitos (%)	2,873 ±0,920	2,926 ±1,036	2,798 ±0,734	2,250 ±0,300	0,554

WBC-Leucócitos; ; VCM – Volume corpuscular médio; HCM – Hemoglobina corpuscular média; CHCM – Concentração de hemoglobina corpuscular média; RDW – Amplitude de distribuição dos eritrócitos

Tabela 41. Distribuição pelo tipo de nutrição e dados bioquímicos dos recémnascidos do Instituto da Mulher Dona Lindu

DADOS BIOQUÍMICOS	Parenteral	LM	FL	Enteral	p-value
Ureia (mg/dL)	22,27 ± 7,669	19,39 ± 5,793	18,97 ± 3,96	18,116 ± 5,29	0,403
Creatinina(mg/dL)	0,579 ± 0,188	0,982 ± 4,452	0,6697 ± 0,2204	0,6164 ± 0,25	0,966
Bilirrubina Indireta(mg/dL)	5,605 ± 7,164	2,333 ± 2,462	1,670 ± 0,920	2,545 ± 0,830	0,052
Bilirrubina Total (mg/dL)	4,917 ± 7,139	1,878 ± 2,329	1,295 ± 0,778	2,040 ± 0,900	0,063
Glicose (mg/dl)	92,97 ± 23,33	82,40 ± 25,54	69,33 ± 10,01	55,80 ± 75,46	0,129
Triglicerideos (mg/dL)	33,346 ± 23,7	39,381 ± 40,34	50,333 ± 56,209	32,09 ± 17,10	0,263
HDL (mg/dL)	40,35 ± 14,81	38,48 ± 12,100	41,347 ± 18,56	38,250 ± 8,40	0,064
DHL (μ/l)	1119 ± 491,2	1051,0 ± 601,4	944,4 ± 360,2	1174,9 ± 996	0,389
Ferro (mcg/dL)	115,5 ± 119,1	102,4 ± 59,87	110,59 ± 48,35	127,81 ± 0,94	0,923
Ferritina (ng/dL)	68,47 ± 36,60	89,65 ± 54,85	77,30 ± 27,51	111,73 ± 28,6	0,124
Transferrina (mg/dl)	123,19 ± 135	140,6 ± 98,93	57,240 ± 45,75	21,74 ± 75,46	0,283

CREA-Creatinina; GGT-Gama Glutamil Transferase; BT-Billirrubina Total; BD-Billirrubina Direta; BI-Billirrubina Indireta; GLICO-Glicose; TRIG-Triglicerídeos; COL-Colesterol; DHL-Desidrogenase Láctica, CTLF-Capacidade Ligadora de Ferro.

6.23. Associação entre os dados hematológicos e bioquímicos dos RNs quanto à classificação racial do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

Tabela 42. Distribuição pela classificação racial e dados hematológicos em recémnascidos do Instituto da Mulher Dona Lindu

DADOS HEMATOLÓGICOS	Parda	Branca	Negra	p-value
Hemácias (106/mm³)	4,545 ± 0,615	4,672 ± 0,49	3,951 ± 0,759	0,004
Hemoglobina (g/dl)	15,690 ± 2,15	15,881 ± 1,93	13,677 ± 2,83	0,016
Hematócrito (%)	51,756 ± 7,02	52,37 ± 5,505	46,544 ± 9,156	0,059
VCM (fL)	114,21 ± 9,60	112,38 ± 8,32	118,05 ± 13,35	0,174
HCM (pg)	34,567 ± 2,17	33,997 ± 2,02	34,588 ± 3,336	0,189
CHCM (pg)	30,4051 ± 2,4	30,306 ± 1,24	29,366 ± 1,2830	0,400
RDW (%)	16,341 ± 1,74	15,957 ± 0,9346	16,1778 ± 0,868	0,254
WBC (x10 ⁹ /mm ³)	12660,4 ± 450	13382,5 ± 3970	12537,7 ± 7168	0,526
Segmentado(%)	5343,2 ± 3528	5634,2 ± 3642,1	3149,55 ± 3169	0,178
Bastão(%)	6,3625 ± 45,9	1,3382 ± 0,3970	1,0863 ± 0,5465	0,665
Linfócitos (%)	5956,57 ± 332	6398,5 ± 3597,3	6719,9 ± 5031,0	0,570
Monócitos(%)	875,284 ± 636	927,15 ± 686,30	686,38 ± 509,3	0,589
Eosinófilos(%)	320,36 ± 431	287,8 ± 392,5	163,43 ± 129,9	0,523
Baso (%)	158,649 ± 170	133,410 ± 153,4	142,128 ± 157,3	0,562
Plaq (x10 ⁹ /L)	223,93 ± 78,8	257,11 ± 7762	195,44 ± 79,401	0,151
VPM (fL)	9,869 ± 1,422	9,5617 ± 1,264	9,2556 ± 1,070	0,151
Reticulócitos (%)	2,826 ± 0,997	3,1184 ± 0,9097	2,8186 ± 0,6584	0,161

WBC-Leucócitos; ; VCM – Volume corpuscular médio; HCM – Hemoglobina corpuscular média; CHCM – Concentração de hemoglobina corpuscular média; RDW – Amplitude de distribuição dos eritrócitos

Tabela 43. Distribuição pela classificação racial e dados bioquímicos em recémnascidos do Instituto da Mulher Dona Lindu

DADOS BIOQUIMICOS	Parda	Branca	Negra	p-value
Ureia (mg/dL)	19,316 ± 5,42	20,068 ± 7,484	18,625 ± 5,166	0,530
Creatinina(mg/dL)	0,9883 ± 4,44	31,57 ± 5,10	$28,06 \pm 5,38$	0,166
GGT(mg/dL)	77,396 ± 69,4	56,811 ± 34,33	48,528 ± 21,8	0,022
Bilirrubina Indireta(mg/dL)	2,258 ± 2,26	2,774 ± 3,524	2,2200 ± 0,50	0,625
Bilirrubina Total (mg/dL)	1,8006 ± 2,12	2,3563 ± 3,500	1,666 ± 0,4041	0,542
Glicose (mg/dl)	80,173 ± 23,2	86,314 ± 30,80	84,15 ± 25,60	0,377
Triglicerideos (mg/dL)	37,120 ± 34,5	43,757 ± 38,7	34,977 ± 11,666	0,282
HDL (mg/dL)	37,624 ± 12,8	40,347 ± 12,8	38,600 ± 10,80	0,209
DHL (µ/l)	1070,12 ± 62	1054,6 ± 513,6	919,02 ± 241,4	0,747
Ferro (mcg/dL)	108,36 ± 67,0	86,868 ± 42,08	162,91 ± 52,72	0,040
Ferritina (ng/dL)	90,7180 ± 58	85,66 ± 33,60	76,63 ± 51,88	0,808
Transferrina (mg/dl)	134,16 ± 94	114,350 ± 91,4	1401,10 ± 1,43	0,781
Capacidade Total de Ligação de Ferro (µg/dL)	414,23 ± 88,6	406,50 ± 106,7	236,00 ± 3,65	0,186

6.24. Associação entre os dados hematológicos e bioquímicos dos RNs quanto ao perfil hemoglobínico do Instituto da Mulher Dona Lindu, Manaus-Amazonas-Março/2014 a Janeiro/2015.

Tabela 44. Distribuição pelo perfil hemoglobínico e dados hematológicos em recémnascidos do Instituto da Mulher Dona Lindu

DADOS HEMATOLÓGICOS	FAA	FAS	FAD	p-value
Hemácias (10 ⁶ /mm³)	4,543 ± 0,613	4,548 ± 0,318	3,520 ± 0,49	0,246
Hemoglobina (g/dl)	15,625 ± 2,17	15,650 ± 1,72	13,200 ± 2,17	0,534
Hematócrito (%)	51,187 ± 7,14	51,07 ± 5,028	43,500 ± 5,95	0,559
VCM (fL)	112,96 ± 9,96	112,19 ± 6,68	123,5 ± 10,32	0,551
HCM (pg)	34,45 ± 2,57	34,33 ± 1,96	37,500 ± 4,16	0,492
CHCM (pg)	30,618 ± 2,32	30,629 ± 1,38	30,344 ± 1,97	0,993
RDW (%)	16,205 ± 1,53	16,300 ± 1,256	14,500 ± 1,62	0,531
WBC (x10 ⁹ /mm ³)	12535 ± 4564	12327 ± 40,38	89400 ± 2,12	0,728
Seg (%)	5532,9 ± 3489	6632,7 ± 2802	4908,0 ± 1,43	0,664
Bastão (%)	4,729 ± 36,69	1,232 ± 0,4038	0,8940 ± 1,43	0,959
Linf (%)	5627,5 ± 3292	4559,6 ± 2465	3074,46 ± 3,65	0,490
Mono (%)	852,6 ± 605,7	809,8 ± 398,8	706,26 ± 15,94	0,952
Eos (%)	363,78 ± 428	271,0 ± 340,1	178,80 ± 5,38	0,758
Baso (%)	124,59 ± 161	52,965 ± 71,54	71,52 ± 0,75	0,436
Plaquetas (x10 ⁹ /L)	232,68 ± 81,3	261,25 ± 42,53	91,00 ± 1,43	0,132
Volume Plaquetário Médio (fL)	9,682 ± 1,36	9,625 ± 1,118	10,00 ± 3,65	0,966
Reticulócitos (%)	2,795 ± 0,969	2,7486 ± 1,480	3,2800 ± 15,94	0,878

Tabela 45. Distribuição pelo perfil hemoglobínico e dados bioquímicos em recémnascidos do Instituto da Mulher Dona Lindu

DADOS BIOQUIMICOS	FAA	FAS	FAD	p-value
Ureia (mg/dL)	19,562 ± 5,78	15,558 ± 4,87	17,700 ± 4,723	0,045
Creatinina(mg/dL)	1,027 ± 5,02	0,586 ± 0,190	0,7000 ± 0,2283	0,943
GGT(mg/dL)	75,132 ± 62,2	45,87 ± 29,59	117,26 ± 71,02	0,066
Bilirrubina Indireta(mg/dL)	2,480 ± 2,596	1,875 ± 0,176	2,6400 ± 1,173	0,943
Bilirrubina Total (mg/dL)	2,017 ± 2,514	1,405 ± 0,134	2,240 ± 1,258	0,935
Glicose (mg/dl)	82,02 ± 22,02	70,00 ± 1,38	$70,00 \pm 1,43$	0,555
Triglicerideos (mg/dL)	38,101 ± 35,7	53,50 ± 58,67	32,66 ± 21,63	0,321
HDL (mg/dL)	38,139 ± 12,6	43,491 ± 8,83	36,68 ± 12,86	0,332
DHL (µ/l)	1121,5 ± 659	1018,5 ± 459,1	899,06 ± 280,7	0,617
Ferro (mcg/dL)	99,105 ± 63,4	78,44 ± 62,89	$105,9 \pm 2,78$	0,627
Ferritina (ng/dL)	94,919 ± 52,1	99,336 ± 27,30	$136,2 \pm 0,75$	0,717
Transferrina (mg/dl)	134,77 ± 98,6	69,815 ± 22,21	93,900 ± 1,43	0,397
Capacidade Total de Ligação de Ferro (µg/dL)	421,1 ± 101,8	423,56 ± 5,69	439,00 ± 3,65	0,866

.

6.25. Associação entre as principais características clínicas das gestantes e recém-nascidos do Instituto da Mulher Dona Lindu

Alguns dados clínicos das gestantes e RNs não foram incluídos devido à falta de informações nos prontuários. Nas características clínicas mais importantes das gestantes está a doença hipertensiva específica da gravidez (DHEG), responsável pelo maior número de intercorrências neonatais como aumento da prematuridade e baixo ao nascer. A idade gestacional, a realização do pré-natal, o tipo de parto, óbito fetal, fumo, anemia na família, diabetes, idade e hemoglobina também foram outros fatores analisados . Os principais dados clínicos analisados dos recémnascidos foram: a raça, o tipo de nutrição, o perfil hemoglobínico do hplc, peso ao nascer, o gênero, a hemoglobina e internação na utineo.

Entre os dados do recém-nascido, os valores do peso foram estabelecidos como de baixo peso, o peso <2500kg e >2500kg o peso normal segundo a OMS, e como parâmetro de anemia, a hemoglobina Hb<13,5 como anêmico e >13,5, hemoglobina normal, assim como as gestantes no qual as hemoglobinas foram classificadas como anêmicas, com valores menores que 11g/dl. (Wintrobe,2006)

Tabela 46. Análises entre dados clínicos das gestantes e recém-nascidos do Instituto da Mulher Dona Lindu.

EVENTO CLÍNICO		Peso ≤ 2500kg	Peso ≥ 2500kg	Valor P
DHEG	Sim	4 (25%)	12 (75%)	0,029
DITEG	Não	19 (6,9%)	255 (93%)	0,029
PARTO	Sim	34 (24,28%)	106 (76%)	-0.001
PREMATURO	Não	22(3,84%)	550 (96%)	<0,001

Tabela 47. Análises entre classificação racial e valores de hemoglobina dos recémnascidos do Instituto da Mulher Dona Lindu.

RAÇA	HB ≤ 13,5g/dL	Hb ≥ 13,5g/dL	Valor P
PARDA	39 (15%)	224 (85%)	0,029
BRANCA	3(5%)	57 95%)	<0,001
NEGRA	6 (66%)	3 (33%)	<0,001

Tabela 48. Análises entre prematuridade e pré-natal das gestantes do Instituto da Mulher Dona Lindu.

		SIM NÃO	Valor P
	Sim	50 (18%) 235 (82%)	o)
PRÉ-NATAL	Não	11(31%) 24 (69%)	0,046

DISCUSSÃO

As hemoglobinopatias são as alterações genéticas mais frequentes em nosso país (Brasil, 2002; CLEGG, 2001; TAVARES,1986). Atualmente, já foram descritas mais de 1.200 mutações nos genes das cadeias globínicas, dentre estas, a Anemia Falciforme é a patologia hereditária monogênica mais encontrada e clinicamente significante (LOBO et al., 2003; SOMMER et al., 2006).

As maiores frequências brasileiras para hemoglobinas variantes encontram-se nos estados com maior concentração de afrodescendentes (MINISTÉRIO DA SAÚDE, 2012). Os indivíduos heterozigóticos somam aproximadamente 2 milhões no nosso País segundo a Agência Nacional de Vigilância Sanitária (SILVA et al., 2010).

Através deste estudo foi possível estimar, pela primeira vez, a prevalência de hemoglobinopatias estruturais em recém-nascidos de uma Maternidade Pública de Manaus-Amazonas e as possíveis correlações com dados hematológicos, bioquímicos e clínicos desta população.

Estudos atuais envolvendo hemoglobinopatias estruturais em gestantes e RNS têm mostrado que a maioria cursa com gestações sem intercorrências (Milner et al., 1980, Serjeant, 1983, Gonçalves et al., 2004). Entretanto, não temos capacidade de prognosticar a direção clínico da paciente durante a gestação, pois a gerência clínica empregada no pré-natal ainda é o fator determinante para evitar complicações clínicas graves (Embury, 1995).

Gestantes portadoras da heterozigose HbAS cursam na maior parte do tempo assintomáticas e sem clinicas graves e comorbidades. Todavia, quando portadoras da HbSS (anemia falciforme) destacam-se elevadas taxas morbidade materno-fetal (Morrison, 1979). As principais complicações clínicas nestes casos são elevadas incidência de prematuridade; números de abortos e morte fetal intra-uterina (Perkins,1971).

A prevalência de 2,7% de hemoglobinas anormais encontrada nos recémnascidos do IMDL apresentou-se de acordo com a média relatada por Naoum, 1997 em um levantamento específico de 101.000 amostras de sangue provenientes de várias regiões do Brasil. O Nordeste apresentou as maiores frequências, sendo o estado da Bahia, o estado com maior prevalência em torno de 5,55%, dos 1,422 indivíduos analisados. (ALVARES E NAOUM,1997). Para o traço falciforme, a prevalência encontrada de 2%(16/825) corresponde à média da prevalência de portadores de traço falciforme no Brasil que é de 2,1%, com variações regionais podendo atingir valores acima de 5%(WATANABE,2007; NAOUM,1997; LIMA et al.,2006; MURAO,2007).

Nossos resultados assemelham-se a estudos anteriores em nossa Região, porém nestes foram realizados em doadores de sangue da FHEMOAM em 1999 e a estudos anteriores na região Norte que relatam a presença de aproximadamente 2,61% de hemoglobinas anormais envolvendo 996 amostras. Destas, 2,15% eram HbAS e 0,46% HbAC. Em Rondônia e no Acre encontra-se uma proporção de nascidos vivos com Traço Falciforme de 1:35 e 1:40 respectivamente segundo dados do Programa Nacional de Triagem Neonatal (JESUS et al., 2010). Nosso estudo corrobora com os de Guerreiro e colaboradores (2012), que apresentaram a frequência de 1,7% para traço falciforme (AS) e não encontraram para HbC em Santarém-Pará.

Cançado e Jesus (2007) observaram através dos dados do Ministério da Saúde, que a frequência maior de indivíduos heterozigotos (AS) é observada justamente nas regiões onde ocorreu elevado tráfego de escravos. (GUEDES et al., 2007; ROBBINS,1991). Em um estudo realizado em São José do Rio Preto, a frequência de 3,7% de traços de HbS foi detectada em amostras de sangue de cordão umbilical e de 5,3% em Pernambuco. Adorno e colaboradores (2005) encontraram a frequência de 9,8% HbFAS em RNs de uma Maternidade da Bahia e é considerada uma das maiores encontradas no País. Em Fortaleza, Pinheiro e colaboradores (2006) encontraram a frequência de 3,84% para Traço falciforme e de 0,93 para homozigotos SS em 389 amostras de sangue de cordão umbilical. Diniz e colaboradores (2009) encontraram a frequência de 3,23% de recém-nascidos com o traço falciforme em Brasília, sendo considerada a quarta unidade da Federação. Carlos e colaboradores (2015) encontraram a frequência de 4,58% de heterozigotos para S em recém-nascidos no Triângulo Mineiro, MG. As hemoglobinas variantes demonstradas na literatura brasileira descrevem as hbS e C como as mais frequentes.

Em nosso estudo, as únicas hemoglobinas variantes encontradas foram S e D. A hemoglobina D tem prevalência mais elevada na Índia, enquanto a S e C na África. Apesar da Hb D quando em homozigose não levar a uma clínica grave como a HbSS, esta tem importância clínica quando em dupla heterozigose com a Hb S, contribuindo para incrementar as manifestações clínicas, assimilando-se à Anemia Falciforme (ADEKILE,2010; TAGHAVI,2011).

Desta forma, o achado de heterozigotos para HbD deve ser considerado como importante dado epidemiológico em nossa população. Nossos dados são semelhantes com os resultados encontrados por Siqueira e colaboradores (2009) da frequência de 2,9% para o HbAS e 1% no estado de Rondônia.

Na cidade de Dourados-MS, Souza e colaboradores (2005) apresentaram para o traço falciforme a incidência de 1,37%, ,37% para HbAC e 0,007% para HbAD.

Em nosso estudo, o predomínio da raça parda, principalmente nos RNs heterozigotos para Hb S e Hb D, ser explicado pela evidente miscigenação racial ocorrida em nosso Estado. Esta miscigenação fez com que a HbS deixasse de ser característica restrita à população negróide, sendo encontrada com frequência, também em populações caucasóides, corroborando com nossos resultados no qual a raça branca possui segundo maior número de portadores heterozigotos para HbS.

Sabe-se que o processo de miscigenação pode ser analisado sob o ponto de vista da distribuição geográfica, no qual o interior do Nordeste e o extremo Norte (Amazonas, Pará e parte do Maranhão) foram formados pelo processo de mestiçagem branco-indígena, que também se pode observar nos estados do Mato Grosso, Mato Grosso do Sul e Goiás (NAOUM,2002).

Em 1976, Ramalho e colaboradores encontraram 2,72% de traço falciforme em 220 recém-nascidos de negroides e caucasóides. Em 1999, Bandeira e colaboradores verificaram que recém-nascidos de mães de cor negra e parda apresentaram 5,4% de HbS e 4,6% para filhos de mães brancas, não encontrando, portanto, diferença estatisticamente significante entre eles. A incidência de hemoglobinas variantes varia de acordo com a fixação regional dos principais grupos colonizadores (ZAGO,1986,1992; NAOUM,1997; BRASIL,2002; SILVA E SILVA, 2013A; CANÇADO, JESUS et al.,2007; MELO et al.,2008). Mas, a doença predomina entre negros e pardos (FELIX et al., 2010).

Dados de 2009 do IBGE confirmam ser a Região Norte, especificamente o Amazonas, a maior prevalência de população parda com 77,2% seguidos do Pará (72,6%), Acre (67,7%) e Amapá (66,9%). Em 2015, Silva e colaboradores afirmam que no Pará encontra-se uma maior concentração de pessoas autodeclaradas negras e pardas. Neste Estado, a prevalência estimada é de 4,4% para indivíduos HbAS e 1% para HbSS (SILVA, 2012; NAOUM, 2000).

Os recém-nascidos portadores de Hb S tanto os traços como os doentes, não apresentam tendência maior de intercorrências neonatais (WHO,1994; NAGHMA, 1981). Esse fato pode ser explicado pela predominância da Hb Fetal, estando a Hb "S" em quantidade reduzida, em torno de 10%; portanto incapaz de trazer problemas no período neonatal imediato. (KRAMER, 1978). No entanto, a representação do perfil hemoglobínico do RN normal é HbFA, por ser a concentração da hemoglobina Fetal (HbF) superior à da hemoglobina normal (HbA), crianças com hemoglobinopatias ou portadoras de traço também apresentam predomínio da HbF (FERRAZ, 2007).

O diagnóstico precoce possibilita o acompanhamento dessas crianças antes do surgimento dos sintomas e complicações, proporcionando assim a melhoria na qualidade de vida e menor mortalidade, principalmente por problemas infecciosos. A proposta do diagnóstico neonatal das síndromes falciformes já é muito conhecida desde a década de 70 nos Estados Unidos e Jamaica. Alguns trabalhos apresentaram com clareza a importância dos procedimentos na redução da septicemia em menores de 5 anos. (Virchinsky,1991; Gutierrez, 1992). O diagnóstico laboratorial da doença falciforme baseia-se na detecção da hemoglobina S e deve seguir as normas estabelecidas no Programa Nacional de Triagem Neonatal (Portaria do Ministério da Saúde nº 822/01), (BRASIL,2001).

Dentre as 825 amostras de sangue de cordão coletadas, 188 foram selecionados e confirmados os perfis de hemoglobina através do HPLC, com as devidas adequações para análise em sangue total (Melo,2008). As amostras de sangue de cordão apresentam vantagem com relação à estabilidade, quando armazenadas em condições adequadas, além de não terem sido expostas a transfusões contribuindo para a confiabilidade dos resultados. Além disso, as análises são mais efetivas, pois a quantidade de amostra permite a realização de todos os testes de triagem e confirmação diagnóstica (SIQUEIRA et al, 2002). As

hemoglobinas identificadas pelos testes são relatadas em ordem crescente de sua concentração. Os genes que controlam a síntese da cadeia β da globina nas hemoglobinas A, S, C e D não são ligados ao sexo, portanto não é esperada diferença na prevalência dos fenótipos.

Como era de esperar, não foi observada diferença entre a presença de Hb S ou D entre os dois sexos nos RN do IMDL. Mais ainda, não observamos diferenças estatísticas entre dados hematológicos, bioquímicos e clínicos quanto ao gênero entre os RNS com perfil AA dos demais heterozigotos. Estes dados corroboram os resultados de Carlos e colaboradores (2015), realizado em um hospital público de referência do Triângulo Mineiro, que não encontraram diferenças significantes com relação ao gênero ou lugar de origem dos recém-nascidos. Porém, encontraram uma proporção maior entre afroascendentes (16,4%). Foster e colaboradores (1981) estudo retrospectivo com 70.000 RNs através de um triados hemoglobinopatias, encontraram a mesma porcentagem (10,1%) tanto para RNs do sexo masculino e feminino e 0,33% para HbSS.

Segundo Lima e colaboradores (2006), não existe relação entre a prevalência de hemoglobinas anormais e o sexo dos indivíduos, uma vez que o gene responsável por essa doença não está ligado ao sexo, mas constituem a estrutura e síntese das cadeias polipeptídicas. Estudos realizados no Brasil mostraram não haver diferença estatisticamente significante entre os portadores ou não de Hb S quanto ao sexo, peso e Apgar (Perin et al., 2000). No entanto, baixo peso ao nascer foi citado em pequena série de casos entre filhos de mães portadoras de traço "S" (Okonofua, 1990). Posteriormente outros estudos não confirmaram esses achados (Bail, 1990).

A incidência de recém-nascidos prematuros e de baixo peso e a mortalidade perinatal não têm sido diferentes entre as gestantes AS e as normais (Whal-ley et al.,1963; Luís,1999). Não houve diferença de média de peso ao nascer dos RNs do IMDL com e sem Hb S ou D. Em 2005, Adorno e colaboradores no seu estudo realizado em uma maternidade da Bahia, também não evidenciaram diferença no peso dos RNs, caso estes fossem portadores de hemoglobinas variantes ou não. Okonofua e colaboradores (1990) compararam 56 gestantes portadoras do traço falciforme com 60 controles normais ("AA") na Nigéria e também não encontraram diferença em relação à média de peso dos RN em ambos os grupos. O indivíduo é

dito portador do traço falciforme quando herda um gene da Hb "A" de um dos pais e um gene da Hb "S" do outro. São considerados e evoluem como pessoas normais, não apresentam nenhuma anormalidade física e sua expectativa de vida é semelhante ao da população geral (Naoum,1987; Robbins,1991; Costa,2002; DiNuzzo,2004; Murao,2007).

A contagem eritrocitária como a morfologia celular sanguínea são geralmente normais nos portadores dessa condição. A sobrevida das hemácias também é normal, raramente está associado a manifestações clínicas ou hematológicas significantes, os indivíduos não apresentam anemia, com hemoglobina variando entre 13 e 15g/dL, portanto é uma condição benigna (Silva, 2010, Oliveira, 2007; Tomé-Alves, 2000; Lukens, 1998; Embury, 1997). As análises hematológicas entre os RN do IMDL de perfil AS e AD mostraram um perfil esperado de achados laboratoriais caracterizados por níveis normais de Ht, Hb e Hm e para os índices hematimetricos VCM, HCM e CHCM de 80 a 90Fl nos respectivos nos recémnascidos a termo. Naoum e colaboradores (2004) observaram que em pacientes heterozigotos para HbAS, a hemoglobina sérica variou de 12 a 16 com média de 13g/dL. Vários estudos concluíram que a seguinte condição poderia estar associada ao portador do Traço Falciforme: infarto esplênico, pielonefrite e bacteriúria na gravidez, hipostenúria e hematúria. Quanto à gestação e ao desenvolvimento do concepto de uma mãe portadora da HbAS, a associação que se mostrou significativa na literatura foi a presença de bacteriúria materna e pielonefrite. Além dessas, a pneumonia e a doença hipertensiva específica da gestação têm sido descritas como manifestações clínicas comuns em pacientes AS (Sears, 1978; Larrabee, 1997; Maccurdy, 1964; Pritchard, 1973; Luís, 1999).

Nos resultados das mães foi possível, ainda, identificar que entre as principais manifestações clínicas foram as infecções do trato urinário (ITU), e a doença hipertensiva específica da gravidez (DHEG). Ferreira e colaboradores (2009) observaram que os resultados dos recém-nascidos para traço falciforme eram próximos aos das mães. Bonamigo e colaboradores (2011) observaram-se que o maior número de intercorrências clínicas no período neonatal foram os sistemas hematológicos em 90,7% e respiratórios (85%) dos casos. Essas insuficiências contribuem para o aumento em internações na Unidade de Terapia intensiva neonatal (utineo), principalmente em prematuros. Em nosso estudo, mostramos que

eventos clínicos como internações na utineonatal foram associados a reduzido número de hemácias, níveis de hemoglobina e hematócrito (p<0,001), respectivamente.

Os dados hematológicos e bioquímicos do nosso estudo quando comparados ao tipo de nutrição, mostraram diferenças significantes para o número de segmentados (p=0,004) e linfócitos (p<0,001) menores naqueles que necessitaram de dieta enteral sugerindo quadros infecciosos e consequente redução do sistema imunológico. A nutrição parenteral fornece nutrição com alto valor calórico, reduzindo o tempo de recuperação do peso, mas pode ser contaminada durante o preparo, o armazenamento e a administração, além da alteração da função dos neutrófilos e dos macrófagos, causada pelos lipídeos (MATSUO, 2002; CLARK et al., 2004; FAIRCHILD, 2004; SAMANTA et al., 2011).

A associação entre dados hematológicos dos RNs quanto ao tipo de nutrição mostrou significância estatística para os valores de segmentados (p=0,004) e linfócitos (p<0,001), conforme mostra a tabela 49. Quanto aos dados bioquímicos houve significância estatística para a concentração de bilirrubina indireta (p=0,052) descrita na tabela 50. Na saúde pública, o peso pode ser considerado importante indicador, pois reflete as condições da saúde materna. O baixo peso ao nascer é definido como inferior a 2500g. (OMS,1993). Seus determinantes são: a prematuridade e restrição do crescimento uterino. As gestantes que desenvolveram DHEG em nosso estudo apresentaram 25% maior risco de conceberem filhos com peso=<2500kg. Nossos dados corroboram com Maia e colaboradores (2010) que identificaram 9,13% recém-nascidos prematuros com baixo peso ao nascer. Baixo peso ao nascer esteve associado a 25% do risco para a prematuridade em nosso estudo. Tais resultados são condizentes com a literatura que apontam a prematuridade como uma das condições mais prejudiciais ao desenvolvimento dos nascituros.

Castro e colaboradores (2007) encontraram prejuízos no desenvolvimento de RNS prematuros relacionados à idade gestacional. Gestantes que não realizaram o pré-natal em nosso estudo apresentaram maior risco para prematuridade em relação as que fizeram. Estes dados corroboram com Aragão e colaboradores (2004) que verificaram que um dos fatores de risco para prematuridade foi o não comparecimento das mães aos exames pré-natais. Nossos dados sugerem que a

adequada assistência pré-natal possivelmente foi responsável na redução dos nascimentos de baixo peso e idade gestacional. A comparação entre a ocorrência de abortos espontâneos e os dados hematológicos e bioquímicos demonstraram significância estatística principalmente para aumento da concentração do VCM (p<0,001), RDW (p=0,003), bilirrubina total (p=0,001), indireta (p<0,001) sugerindo sangramentos espontâneos.

Aumento nos valores séricos de LDL (p=0,04) está fortemente ligada a episódios de pré-eclâmpsia.

Estudos têm evidenciado que os níveis de hemoglobina em negros são menores, variando entre 0,5 e 1g/dL em relação à raça branca. Mesmo controlando possíveis fatores de confusão como estado nutricional de ferro, nível socioeconômico, idade e comorbidades. Por volta dos anos 90, pesquisadores começaram a observar diferença inexplicável nos níveis de hemoglobina entre brancos e negros. (SPERANDIO,2015). Desde então, estudos começaram a encontrar baixos níveis de hemoglobina e hematócrito em indivíduos de cor negra. Em nosso estudo, mostramos que os RNs de cor negra apresentaram níveis de hemoglobina, hemácias e hematócrito mais baixos do que os de cor branca e parda. Consideramos a necessidade de estudos adicionais para elucidar fatores que poderia explicar essa diferença entre as raças.

Os dados apresentados revelam uma prevalência de hemoglobinas compatível com as estimativas para o Estado do Amazonas. A semelhança relativa à presença de Hb S ou D entre os RN de cor parda e branca sugere que não seja indicada a triagem pela cor da pele. Esse fato é reforçado pela não interferência da presença de Hb S ou D nas condições de nascimento, o qual corrobora com a indicação da triagem neonatal de hemoglobinopatias de forma universal.

Esta pesquisa buscou apresentar a prevalência em recém-nascidos do Estado do Amazonas, e os resultados obtidos no presente trabalho permitem reforçar a necessidade de implantação de programas educativos e de prevenção com o intuito de conscientizar a população, a fim de diminuir os efeitos causados por essas alterações genéticas, tantos nos casos de homozigose como heterozigose, e com isso contribuir na melhoria da qualidade de vida desses pacientes.

Por outro lado, ressalta a realização da triagem neonatal com o seguimento dos casos positivos e aconselhamento genético às famílias acometidas e também a inclusão das anemias hereditárias como rotina dos exames pré-natais a fim de orientá-las sobre a probabilidade de terem uma criança com a forma homozigota de hemoglobinopatia.

8. CONCLUSÃO

A partir dos objetivos propostos neste estudo, e as metodologias utilizadas para a investigação das hemoglobinopatias estruturais em recém-nascidos de uma maternidade pública do Estado do Amazonas, concluímos que:

- 1. A frequência de recém-nascidos portadores de hemoglobinopatias estruturais foi de 2,7%, sendo 16(2%) para o perfil FAS e 6(0,7%) para o perfil FAD;
- 2. A frequência das hemoglobinas estruturais foi mais elevada em recémnascidos de cor parda;
- 3. A frequência de hemoglobinas estruturais foi menor entre os recém-nascidos declarados caucasóides:
- 4. Os recém-nascidos portadores de perfil AS e AD não apresentaram aumento dos parâmetros hematológicos e bioquímicos;
- Não foram encontrados portadores de outros perfis comuns de hemoglobinopatias estruturais nos recém-nascidos estudados;
- 6. Os recém-nascidos do gênero masculino e feminino portadores do perfil AS e AD não apresentaram alterações nos parâmetros hematológicos e bioquímicos;
- 7. Os recém-nascidos do gênero feminino apresentaram maior frequência para o perfil AS;
- 8. Os recém-nascidos prematuros de perfil AS e AD não apresentaram diferenças quanto ao peso ao nascer;
- 9. Os recém-nascidos com baixo peso ao nascer apresentaram maior frequência de internações intensivas (UCINEO e UTINEO);
- 10. As mães menores de idade apresentaram maior frequência de recémnascidos com baixo peso e idade gestacional;
- 11. As mães dos portadores de heterozigose AS e AD apresentaram maior frequência de eventos clínicos como a infecção urinária, a anemia e a doença hipertensiva específica da gravidez;
- 12. As mães dos portadores de heterozigose AS e AD não apresentaram aumento de abortos espontâneos anteriores ou histórico de prematuridade.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- 1. ADORNO EVC; COUTO, Fd; NETO, José Pereira; MENEZES, JF; REGO, MR; REIS, MG; GONÇALVES MS. ALMEIDA, L. P. O laboratório clinico na investigação dos distúrbios da hemoglobina Jornal Brasileiro de Patologia e Medicina Laboratorial v. 47 n. 3 p. 271-278 •São Paulo, 2011.
- 2. ADEKILE A., Mullah-Ali A., Akar NA. Does elevated Hemoglobin F Modulate the Phenotype in Hb SD-Los Angeles?. Acta Haematol 123:1350-139, Kuwait, 2010.
- 3. ALVARES FILHO F; NAOUM PC; MOREIRA, HW; CRUZ R et al. Distribucion geográfica etária y racial de la hemoglobina S en Brasil, 1995.
- 4. ANGASTINIOTIS, M. &. MODELL, B., Global epidemiology of hemoglobin disorders. Annals of the New York Academy of Sciences, 850:251-269, 1998.
- 5. ARAÚJO,MCPE. Prevalência de hemoglobinas anormais em recém- nascidos da cidade de Natal, Rio Grande do Norte, Brasil. Cad. Saúde Pública, Vol 20(1): 123-128, 2004.
- 6. ARAUJO, A. N. Acute splenic sequestration in children with sickle cell anemia. J Pediatr., Vol.85(4):373,2009.
- 7. ARENDS,A;CHACIN,M; MONTILLA,S; CASTILLO,O. Hemoglobinopatías em Venezuela. Interciência, vol.32, n. 8, 2007.
- 8. AZEVEDO, W.C. Distribution of abnormal hemoglobins and glucose-6-phosphate dehydrogenase variants in 1200 school children of Bahia, Brazil. Am. J. Phys. Anthropol. Vol. 53: 509-512, 1980.
- 9. BACKES, Carlos Eduardo; MALLMANN, Fernanda G; DASSI, Thais; BAZZO, Maria Luiza, SILVA, Maria Cláudia Santos. Triagem neonatal como um problema de saúde pública. Rev. bras. hematol. hemoter. Vol. 27(1): 43-47,2005.
- 10. BAIL IC; WITTER FR. Sickle trait and its association with birthweight and urinary tract infecctions in pregnancy. Int. J. Gynecol Obstet, 1990.
- 11. BALDANZI, Tatiana; BALDANZI, Giorgio Scopel, Lucas. Hemoglobinopatias SD. Manifestações clínicas de uma variante heterozigótica da doença falciforme em um relato de caso. Hemobanco, Curitiba, 2015.

- 12. BANDEIRA, FMGC;LEAL,MC;SOUZA,RR et al.Características de recémnascidos portadores de hemoglobina "S" detectados através de triagem de sangue de cordão umbilical. Jornal de Pediatria, Recife, 1999.
- 13. BELISÁRIO, André; VIANA, Marcos. Efeitos da Talassemia Alfa nas manifestações clínicas e hematológicas da Anemia Falciforme: uma revisão sistemática. Revista de Medicina de Minas Gerais. Belo Horizonte, 2010.
- 14. BERGER, E.; SAUNDERS, N.; WANG, L.; FRIEDMAN, J. N. Sickle cell disease in children: differentiating osteomyelitis from vaso-occlusive crisis. Arch Pediatr Adolesc Med., Vol.163(3):251-5,2009.
- 15. BERRY, PA; CROSS, TJ; THEIN ,SL; Portmann, BC; Wendon, JÁ; KARANI, JB, et al. Hepatic dysfunction in sickle cell disease: a new system of classification based on global assessment. Clin 5:1469–76. Gastroenterol Hepatol,2007.
- 16. BERTHOLO, LC;MOREIRA,HW.Amplificação gênica alelo-específica na caracterização das hemoglobinas S,C e D e as interações entre elas e talassemias beta. Jornal Brasileiro Medicina Laboratorial. p.245-251. Rio Grande do Sul, 2006.
- 17. BEUTLER, E. The sickle diseases and related disorders. In: Beutler, E., Lichman, M.A., Coller, B.S., Kipps, T.J. Williams's hematology. 5. Ed. New York: McGraw-Hill, Inc., 1995.
- 18. BONINI-Domingos CR. Prevenção das hemoglobinopatias no Brasil:diversidade genética e metodologia laboratorial. Tese (Doutorado em Ciências Biológicas) Instituto de Biociências, Letras e Ciências Exatas, Unesp, São José do Rio Preto.; 138p, 1993.
- 19. BONINI-Domingos CR, ONDEI LS, ZAMARO PJ. Hemoglobinas similares a S no Brasil um guia prático de identificação. São José do Rio Preto (SP). Editora HN,2006a.
- 20. BONINI-Domingos CR, Metodologias Laboratoriais para o diagnóstico de Hemoglobinopatias e Talassemias. São José do Rio Preto (SP). Editora HN,2006.
- 21. BONINI-Domingos CR,As hemoglobinopatias e a diversidade genética da população brasileira. Revista Brasileira de Hematologia e Hemoterapia, 2009.

- 22. BORGES E.Wenning MRSC; KIMURA, EM. Gervasio SA, COSTA FF; BOTLER, Judy; CAMACHO, JAB; CRUZ, MM. Fenilcetonúria, hipotireoidismo congênito e hemoglobinopatias: questões de saúde pública para um programa de triagem neonatal brasileiro. Caderno de Saúde Pública, Rio de Janeiro, 2012.
- 23. BORGES E, Wenning MR, KIMURA EM, *et al.* High prevalence of alpha-thalassemia among individuals with microcytosis and hypochromia without anemia. Braz J Med Biol Res, 2001.
- 24. BRANDELISE, S.; PINHEIRO, V.; GABETTA, C.S.; HAMBLETON, I.; SERJEANT, B.; SERJEANT, G. Newborn screening for sickle cell disease in Brazil: the Campinas experience. Clin. Lab. Haematol., 26:15-19, 2004.
- 25. BRASIL. Ministério da Saúde. Portaria GM/MS n° 822, de 06 de junho de 2001, PNTN. Brasília, (DF),2001.
- 26. BRASIL.Agência Nacional de Vigilância Sanitária. Manual de diagnóstico e tratamento de doenças falciformes. Brasília (DF): ANVISA; 2002.
- 27. BRASIL. Ministério da Saúde. Manual de Normas Técnicas e Rotinas Operacionais do Programa Nacional de Triagem Neonatal. Série A, Brasília DF, 2002.
- 28. BRASIL. Ministério da Saúde. Manual de Educação em Saúde, volume 2.Linha de cuidado em Doença Falciforme. Série A, Brasília DF, 2009.
- 29. BUNN, H.F.; FORGET, B.G.: Sickle cell disease-molecular and cellular pathogenesis; In BUNN, H.F.; FORGET, B.G (eds.). Hemoglobin: Molecular, Genetic and Clinical Aspects. Philadelphia, PA, USA, p. 453-501,1986.
- 30. BUNN, HF; ASTER, J. Pathophysiology of blood disorders. McGrawHill. Boston, 2011.
- 31. CARDOSO, Greice et al. Hemoglobinopatias hereditárias em uma comunidade afro-amazônia: Saracura. Sociedade Brasileira de Genética, 2012.
- 32. CARVALHO, Flávio et al. Estudo comparativo da eficiência da eletroforese alcalina em acetato de celulose na identificação de hemoglobinas utilizando diferentes tampões. RBAC, Vol. 42(4): 293-296, 2010.

- 33. CASTELO, NM;GOMES,LV;NASCIMENTO,RE;RODRIGUES,AS. Anemia Falciforme sobre o olhar de pessoas com a doença no Amapá. Ciência Equatorial, vol.2, Macapá, 2012.
- 34. CASTRO, AG;LIMA MC;AQUINOO, RR. Desenvolvimento do sistema sensório motor oral e global em lactentes pré-termo. Pró-fono Revista Atualização Científica,2007.
- 35. COUTO, F. D.; DE ALBUQUERQUE, A. B.; ADORNO, E. V.; DE MOURA NETO, J. P.; DE FREITAS, A. L.; DE OLIVEIRA, J. L.; DOS REIS, M. G.; GONCALVES, M. Alpha-Thalassemia 2, 3. 7 kb deletion and hemoglobin AC heterozygosity in pregnancy: a molecular and hematological analysis. Clin. Lab. Haematol., Vol.25:29-34, 2003.
- 36. COSTA, FF;ZAGO MA; FALCÃO RP. Hematologia fundamentos e prática. 1ª edição. São Paulo, 2001.
- 37. COSTA, CM;BRUM,IR;LIMA,ES. Anemia e marcadores séricos da deficiência de ferro em grávidas atendidas na rede pública municipal de Manaus, Amazonas, Brasil. Acta Amazônica, vol.39:901-906p.Manaus, 2009.
- 38. CLASTER; S, VICHINSKY EP. Managing sickle cell disease. BMJ.327:1151–5.,2003.
- 39. CLEGG JB. Inherited Haemoglobin Disorders: an Increasing Global Health. Bulletin of the World Health Organization. 2001.
- 40. CHARACHE, S. Fetal hemoglobin, sickling, and sickle cell disease. Adv. Pediatr., 37:1-31, 1990.
- 41. CHINELATO-FERNANDES, Ana R. et al. Avaliação eletroforética, cromatográfica e molecular da Hb D Los Angeles no Brasil. Rev. Bras. Hematol. Hemoter., [s.l.], v. 25, n. 3, p.161-168, 2003.
- 42. DAUDT, L.E. Triagem neonatal para hemoglobinopatias: um estudo piloto em Porto Alegre, Rio Grande do Sul, Brasil Cad. Saúde Pública, Rio de Janeiro, Vol 18(3): 833-841 mai-jun, 2002.
- 43. DI NUZZO DVP,FONSECA SF.Anemia Falciforme e Infecções. JPediatria.Rio de Janeiro,2004.

- 44. DINIZ, D;GUEDES C et al. Prevalência do traço e da anemia falciforme em recém-nascidos do Distrito Federal, Brasil, 2004 a 2006. Cad.Saúde Pública, Rio de Janeiro, 2009.
- 45. DUCATTI R.P, TEIXEIRA A.E.A, GALÃO H.A, BONINI-DOMINGOS C.R, FETTCONTE A. Investigação de hemoglobinopatias em sangue de cordão umbilical de recém-nascidos do Hospital de Base de São José do Rio Preto. Rev. Bras.Hematol. Hemoter. vol.23 no.1 São José do Rio Preto Jan./Apr. 2001.
- 46. EATON WA, HOFRICHTER J. Hemoglobin S gelation and sickle cell disease. Blood, v. 70, p. 1245-1266, 1987.
- 47. FRIEDMAN, N. Pediatric stroke: past, present and future. Adv Pediatr., VOL.56:271-99,2009.
- 48. FRENETTE, P.S.; ATWEH GF Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest. v.117, n.4, p.850-8, 2007.
- 49. FERRAZ, Maria Helena C; MURAO, Mitiko. Diagnóstico laboratorial da doença falciforme em neonatos e após o sexto mês de vida. Revista Brasileira de Hematologia e Hemoterapia, 2007.
- 50. FERREIRA, L;CIPOLOTTI,R;COUTINHO,H.Frequência de portadores de hemoglobinopatias em puérperas e seus recém-nascidos.Revista Brasileira de Hematologia e Hematologia. Sergipe, 2009.
- 51. FELIX, Andreza A.; SOUZA, Hélio M. e RIBEIRO, Sônia B. F. Aspectos epidemiológicos e sociais da doença falciforme. Rev. Bras. Hematol. Hemoter. p. 203-208,32(3), 2010.
- 52. FOSTER, K, FORBES M, HAYES R, SERJEANT GR. Cord blood screening for sickle hemoglobina:evidence against a female preponderance of HbS. JPediatric, 1981.
- 53. GARANITO, Marlene Pereira. Hemoglobinopatias-Interpretação do teste de triagem neonatal. Jornal de Pediatria, São Paulo. 172-176,2008.
- 54. GELLER, A. K.; O'CONNOR, M. K. The sickle cell criss: a dilemma in pain relief. Mayo Clin Proc., Vol.83 (3):320-3, 2008.

- 55. GONCALVES, M. S.; BOMFIM, G. C.; MACIEL, E.; CERQUEIRA, I.; LYRA, I.; ZANETTE, A.; BOMFIM, G.; ADORNO, E. V.; ALBUQUERQUE, A. L.; PONTES, A.; DUPUIT, M. F.; FERNANDES, G. B.; REIS, M. G. β S Haplotypes in sickle cell anemia patients from Salvador, Bahia, Northeastern Brazil. Braz. J. Med., Vol.36: 1283-1288, 2003.
- 56. GUIMARÃES, CTL; COELHO, GO. A Importância do Aconselhamento na Anemia Falciforme. Rev. Ciência e Saúde Coletiva, 15; 1733-1740,2010.
- 57. HIGGS, DR. A review of the molecular genetics of the human α-globin gene cluster. Blood. 73:1081-104, 1989.
- 58. HOFFBRAND.AV & PETTIT. Essential Hematology. 3.ed. London:Blackwell Science, 1993.
- 59. HOPPE CC. Prenatal and newborn screening for hemoglobinopathies. Int J Lab Hematol. 35(3): 297-305, 2013.
- 60. HUISMAN,THJ;CARVER A; EFREMON,GD. A syllabus of Hemoglobin Variants, ed.2.Sicke Cell Anemia Foundation.p252, 1998.
- 61. ITANO,HA; NEEL, JV. A new inherited abnormality of human hemoglobina. Proc.Nat.Acad.Sc,613-617, 1950.
- 62. ITANO,HA. A third abnormal haemoglobin associated with hereditary hemolytic anemia. Proc Natl Acad Sci USA, 37:775,1951.
- 63. JESUS, JA. Doença Falciforme no Brasil. Gazeta Médica da Bahia, 2010.
- 64. LEHMANN H, HUNSTAMN RG. Man's haemoglobins. Amsterdam. North-Holland Publishing Companhy, 478p,1974.
- 65. LIMA, R.C.F;CASTRO E.F.P.;NÓBREGA M.S.Triagem de Hemoglobinas Anormais em Crianças e Adolescentes. Rev.NewsLab.ed76,2006.
- 66. LOBO CLC;BUENO, LM et al. Triagem Neonatal para hemoglobinopatias no Rio de Janeiro. Rev Panam Salud Publica, 2003.
- 67. LUKENS, J.N. Hemoglobinopatias S,C,D,E e O e Doenças associadas. Wintrobe Hematologia Clínica, São Paulo. Manole,1994.

- 68. MAIA, RRP;SOUZA,JMP.Fatores associados ao baixo peso ao nascer em Município do Norte do Brasil. Rev.Bras.Crescimento Desenvolvimento Hum.20,735-744, 2010.
- 69. MATHIAS, J.L. Caracterização Molecular da Desidrose da Glicose-6-fosfato e Hemoglobinopatias em **Pacientes** com Malária por Plasmodium Vivax. Graduação Pós Dissertação(Mestrado)-Curso de em Ciências Farmacêuticas. Universidade Federal do Amazonas, UFAM. Manaus, 2013.
- 70. MELO, Luciane; SIQUEIRA, Fátima; CONTE, Agnes; BONINI, Cláudia. Rastreamento de hemoglobinas variantes e talassemias com associação de métodos de diagnóstico. Revista Brasileira de Hematologia e Hemoterapia. 2007.
- 71. MOHANDAS N, EVANS E. Rheological and adherence properties of sickle cells. Potencial contribution to hematologic manifestations of the disease. Ann NY Acad Sci, v. 565, p. 327-337, 1989.
- 72. MURAO M,Ferraz MHC.Traço Falciforme-heterozigose para hemoglobina S. Rev.Bras.Hematol.Hemoter.São Paulo, 2007.
- 73. NAGEL, RL, STEINBERG MH (2001a) Genetics of the βS gene: Origins, genetic epidemiology, and epistasis in sickle cell anemia. In: Steinberg MH, Forget BG, Higgs DR and Nagel RL (eds) Disorders of Hemoglobin Genetics, Pathophysiology, and Clinical Management. Cambridge University Press, New York, p 711-755, 2001.
- 74. NAGHMA,R. Growth status of children with and without sickle cell trait. Clin Pediatr, 1981.
- 75. NAOUM PC;MATTO, LC;CURY,PR. Prevalence and distribution of abnormal hemoglobins in state of São Paulo, Brazil. Bull.Pan.Am.Health Organ, 127-138, 1984.
- 76. NAOUM, Paulo.Hemoglobinas anormais no Brasil. Prevalência e distribuição geográfica. Revista Brasileira de Pathologia Clínica, p 68-79,1987.
- 77. NAOUM, Paulo;BONINI,Cláudia. Roteiro teórico auxiliar para Curso Diagnóstico das Hemoglobinopatias. São José do Rio Preto, SP, 1995.
- 78. NAOUM, Paulo. Hemoglobinopatias e Talassemias. Sarvier, São Paulo, 1997.
- 79. NATHAN and OSKI'S. Hematology of infancy and childhood. Elsevier, Canada, 2009.

- 80. NOGUCHI CT. Polymerization in erythrocytes containing S and non-S hemoglobins. Biophys J, v. 45, p. 1154-1158, 1984.
- 81. OHENE-FREMPONG, K.; STEINBERG, M. H. Clinical aspects of sickle cell anemia in adults and children. In: STEINBERG, M. H.; FORGET, B. G.; HIGGS, D. R.; NAGEL, R (eds.): Disorders of hemoglobin- genetics, pathophysiology and clinical management. New York: Cambridge University press, 2001.
- 82. OLIVEIRA, J. Luís. Contribuição ao Estudo da Frequência de Hemoglobinopatias Estruturais e sua Influência no Aparecimento de Manifestações Clínicas em Gestantes de uma Maternidade de Salvador-BA. Dissertação (Mestrado)-Curso de Pós Graduação em Assistência Materno-Infantil. UFBA. Bahia, 1999.
- 83. OLIVEIRA, RA. Hemograma: como fazer e interpretar. Lmp, São Paulo, 2007.
- 84. OLIVEIRA, RG; ZAMARO, PJA, DOMINGOS, CRB. Comparing electrophoresis at alkaline pH and high performance liquid chromatography to diagnose Hb S-like Hemoglobin. Revista Brasileira de Hematologia e Hemoterapia.; 34(2): 168-71,2012.
- 85. ONDEL LS; ZAMARO PJA; MANGONARO, PH; VALENCIO, CR; BONINI-DOMINGOS CR. HPLC determination of hemoglobins to establish reference values with the aid of statistics and informatics. Genet. Mol. Res. 453-460,2007.
- 86. ORLANDO G.M, NAOUM, P, SIQUEIRA, F, BONINI, C. Diagnóstico laboratorial de hemoglobinopatias em populações diferenciadas. Revista Bras. Hematol.hemoter.Vol: 22;111-121,2000.
- 87. OKONOFUA FE, ODUTAYO R, ONWUDIEGWU U. Maternal sickle cell trai tis not a cause of low birth weight in Nigerian neonates. Int J Gynecol Obstetric, 1990.
- 88. PACE, B.S.; ZEIN, S. Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev Dyn. v. 235, n. 7, p. 1727-1737, 2006.
- 89. PATEL DK, traço PM, haplótipos dos genes das β -globina ligados à β 121 Hb D-Punjab (GH4) Glu \rightarrow Gln, GAA \rightarrow mutação CAA no leste da Índia, Hemoglobina, 2010.
- 90. PERIN, Christiano; FILHO, Eurico C.; BECKER, Fábio L.; ALDISSEROTTO, Fábio M.; RAMOS, Gabriel Z.; ANTONELLO, Jerônimo S.; ALEXANDRE, Cláudio O. P. e

- CASTRO, Elisabeth C. Anemia Falciforme. Disciplina de Genética e Evolução, Fundação Faculdade Federal de Ciências Médicas de Porto Alegre, Departamento de Ciências Morfológicas, Porto Alegre, 2000.
- 91. PERUTZ, M.F.; ROSSMANN, M.G.; CULLIS, A.F. et al. Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. Nature, v.13, n.185 (4711), p. 416-22, 1960.
- 92. PINHEIRO, LS;GONÇALVES,RP;TOMÉ,CAS;ALCANTARA,AEE et al.Prevalência de hemoglobina S em recém-nascidos de Fortaleza:importância da investigação neonatal. Revista Brasileira Ginecologia Obstetricia, Fortaleza, 2006.
- 93. PRENGLER, M.; PAVLAKIS, S. G.; PROHOVNIK, I.; ADAMS, R. J. Sickle cell disease: the neurological complications. Ann Neurol., Vol.51:543-52, 2002.
- 94. PROYTCHEVA, Maria. Diagnostic Pediatric Hematopathology. Cambridge University Press, 2011.
- 95. RAMALHO,AS.Hemoglobina S em doadores de sangue brasileiros.Rev.Ass.Med.Bras,1976.
- 96. RAMALHO,AS;MAGNA LA;PAIVA-E-SILVA RB.Government directive MS 822/01 of the Brazilian Ministry of Health and neonatal screening of hemoglobinopathies. Rev.Bras. Hematol Hemoter, 2002.
- 97. REIS, PAULO. A importância do diagnóstico precoce na prevenção das anemias hereditárias. Revista Brasileira de Hematologia e Hemoterapia. Vol.28(2): 149-152,2006.
- 98. REZENDE, P. V.; VIANA, M. B.; MURAO, M.; CHAVES, A. C.; RIBEIRO, A. C. Acute splenic sequestration in a cohort of children with sickle cell anemia. J Pediatr., Vol.85(2):163-9, 2009.
- 99. RIBEIRO, Rita et al. Importância da avaliação da hemoglobina fetal na clínica da anemia falciforme. Revista Brasileira de Hematologia e Hemoterapia.; 30(2): 136-141,2008.
- 100. ROBBINS,SL;COTRAN R,S;KUMAN V.Doença dos eritrócitos e distúrbios hemorrágicos. Patologia Estrutural e Funcional. 4ed, p.540-576.Rio de Janeiro. Guanabara Koogan, 1991.

- 101. ROGOVIK, A. L.; FRIEDMAN, J. N.; PERSAUD, J.; GOLDMAN, R. D. Bacterial blood cultures in children with sickle cell disease. Am J Emerg Med., Vol.28(4):511-4,2010.
- 102. ROSEFF, S. D. Sickle cell disease. Immunohematology., Vol.25(2):67-74, 2009.
- 103. SARNAIK, S. A.; BALLAS, S. K. Molecular characteristics of pediatric patients with sickle cell anemia and stroke. Am. J. Hematol., Vol.67: 179-182, 2001.
- 104. SERJEANT GR. Sickle cell disease.Oxford, Oxford University Press., p. 415-424, 2001.
- 105. SEARS DA. Sickle cell trait in Sickle cell disease: basic principles and clinical practice.MH ed. New York, Ravem Press, p. 381-394, 1994.
- 106. SILLA, LMR. Doença falciforme: um grave e desconhecido problema de saúde pública no Brasil. Jornal de Pediatria, Rio de Janeiro, 1999.
- 107. SILVA, JEP;GIOVELLI,LL.Traço Falciforme:uma visão para os centros de hemoterapia. Revista Saúde(Santa Maria),v.36, n.1,2010.
- 108. SILVA, A.K. O contexto epidemiológico e Biossocial da Doença Falciforme no Pará, Amazônia, Brasil. Revista da Associação Brasileira dos Pesquisadores Negros, ABPN, v.7, n.16,2015.
- 109. SILVA, W.S.; LASTRA, A.; OLIVEIRA, S.F.; GUIMARÃES, N.K.; GRISOLIA, C.K. Evaluation of coverage by a neonatal screening program for hemoglobinopathies in the Recôncavo region of Bahia, Brazil. Cad. Saúde Pública, v.22, n.12, p. 2561-6, 2006.
- 110. SILVA-LIMA, JC. Interação de anemia falciforme e alfa talassemia, aspectos moleculares, hematológicos e bioquímicos um estudo na população brasileira. Rio de Janeiro, 1997.
- 111. SIQUEIRA, Fátima A. M; FETT-CONTE, Agnes C; BORIN, Leila N. B; BONINI-Domingos, CLAUDIA R. Diagnóstico de hemoglobinopatias em recém-nascidos do Hospital de Base de São José do Rio Preto-SP. Revista Brasileira de Hematologia e Hemoterapia. Vol: 24 São José do Rio Preto, 2002.
- 112. SIQUEIRA, Bruna R.; ZANOTTI, Luciene C.; NOGUEIRA, Adriana e MAIA, Adriana C. S. Incidência de anemia falciforme, traço falcêmico e perfil hemoglobinico

- dos casos diagnosticado na triagem neonatal no Estado de Rondônia no ano de 2003. Saber Científico. Porto Velho, 2009.
- 113. SMITH, W. R.; PENBERTHY, L. T.; BOVBJERG, V. E.; MCCLISH, D. K.; ROBERTS, J. D.; DAHMAN, B.; AISIKU, I. P.; LEVENSON, J. L.; ROSEFF, S. D. Daily assessment of pain in adults with sickle cell disease. Ann Intern Med., Vol.15;148(2):94-101,2008.
- 114. SOMMER,CK;GOLDBECK,A.S;WAGNER,SC;CASTRO,SM. Triagem neonatal para hemoglobinopatias:experiência de um ano na rede de saúde pública do Rio Grande do Sul.Cad.Saude Publica, 2006.
- 115. SONATI, M. F.; FARAH, S. B.; RAMALHO, A. S.; COSTA, F. F: High prevalence of α-Thalassemia in a black population of Brazil. Hemoglobin. Vol.15: 309-311, 1991.
- 116. SONATI MF, COSTA, FF. The genetics of blood disorders: hereditary Hemoglobinopathies. Jornal de Pediatria, 2008.
- 117. STEINBERG. Management of Sickle Cell Disease. Martin H. Steinberg, M.D. N Engl J Med; 340:1021-1030, 1999.
- 118. STEINBERG, M. H. Modulation of fetal hemoglobin in sickle cell anemia. Hemoglobin. Vol.25:195-211, 2001.
- 119. STEINBERG MH;FORGET, BG;HIGGS,DR;NAGEL,RL.Disorders of Hemoglobin. Cambridge, Cambridge University Press, 1269p,2001.
- 120. STEINBERG, Martin H., "Genetic Etiologies for Phenotypic Diversity in Sickle Cell Anemia," TheScientificWorldJOURNAL, vol. 9, pp. 46-67, 2009.
- 121. STUART, M. J.; NAGEL, R. L. Sickle-cell disease. Lancet., Vol.364: 1343-1360, 2004.
- 122. SUN, MP et al. Sickle cell disease in pregnancy. Twenty years of experience at Grady Memorial Hospital, Atlanta, Georgia. American Journal of Obstetrics and Gynecology.v184.2001.
- 123. TAGHAVI Basmanj M, KARIMIPOOR M, AMIRIAN A, JAFARINEJAD M, KATOUZIAN L, VALAEI A. A. Co-herança de hemoglobina D e traços de betatalassemia em três famílias: relevância clínica Arch Irão Med ,2011.

- 124. TAN, A. S., T. C. Quah, et al. . "A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for alpha-thalassemia." Blood 98(1): 250-1,2001.
- 125. TOMÉ-ALVES, R, Marchi-Salvador DP, Orlando GM, *et al.* Hemoglobinas AS/Alfa talassemia importância diagnóstica. Revista Brasileira de Hematologia e Hemoterapia, 2000.
- 126. TORRES, LS;OKAMURA, JV; SILVA, DGH; BONINI, CRB. Hemoglobin D-punjab: origem, distribuição e diagnóstico laboratorial. Revista Brasileira de Hematologia e Hemoterapia, 37,120-126p. São Paulo, 2015.
- 127. THOMPSON,MW;MCINNES,RR. Genetics in Medicine. 6 ed. USA, Saunders Ed, 2004.
- 128. THOMAS, PW;HIGGS, DR, SERJEANT, GR.Benign clinical and haematological expression of hemoglobin S in Saudi Arabia. Acta Haematolol;882.67-71, 1997.
- 129. WATANABE A.M.Prevalência da anemia falciforme no estado do Paraná. Dissertação(Mestrado)-Programa de Pós Graduação em Medicina Interna. Setor Ciências da Saúde. UFPR.Curitiba,2007.
- 130. WEATHERALL DJ, CLEGG JB. Thalassemia syndromes. Oxford, Blackwell Scientific Publications, 380-382p,1981.
- 131. WEATHERALL DJ, CLEGG JB. Inherited haemoglobin disorders: an increasing global health problem. Bulletin of the World Health Organization, 2001.
- 132. WHO. Sickle-cell disease and other haemoglobin disorders.Fact sheet N°308, 2011.
- 133. WHO.Hereditary Diseases programee. Guidelines for the control of haemoglobin disorders. Geneva, 1994.
- 134. WINTROBE'S Clinical hematology. 12th ed. Vol. 1. Philadelphia, 2009.
- 135. WOOD, WG. Haemoglobin synthesis during human fetal development. British Medical Bulletin, 1976.
- 136. VAN DER DIJS,FPL et al. Screening cord blood for hemoglobinopathies and thalassemia by HPLC. Clin Chem, 1992.

- 137. VERDUZCO, LA.; NATHAN, D. G. Sickle cell disease and stroke. Blood., Vol.114(25):5117-25,2009.
- 138. VICHINSKY, E; HUST, D; EARLES,A. Newborn screening for sickle cell disease: effect on mortality. Pediatrics, 1988.
- 139. YAMAGUCHI. Os benefícios da inclusão das hemoglobinopatias na triagem neonatal. Arq. Ciências da Saúde Unipar, 11;67-73, 2007.
- 140. ZAGO, MA, Falcão RP, Pasquini R, editors. Hematologia: fundamentos e prática. São Paulo:Atheneu,2004.
- 141. ZAGO, MA.Hemoglobinopatias:prevalência e variabilidade. Revista Paulista Medicina. São Paulo,1986.
- 142. ZAGO, Marco A., FIGUEIREDO, Mauro S. e OGO, Satie H. Ban predominates among Brazilian blacks. Am. J. Phys. Anthropol, 88, p. 295-298,1992.
- 143. ZAMARO Pja. Diagnóstico Laboratorial de hemoglobinas semelhantes à HbS. Jornal Brasileiro de Patologia e Medicina Laboratorial, 38: 261-266,2002.
- 144. ZANATTA, Talita; MANFREDINI, Vanusa. Comparação entre métodos laboratoriais de diagnóstico de Doenças Falciformes. Newslab, ed.94,2009.

APÊNDICE 1 PARECER DO COMITÊ DE ÉTICA EM PESQUISA

FUNDAÇÃO UNIVERSIDADE DO AMAZONAS - FUA (UFAM)

PARECER CONSUBSTANCIADO DO CEP

DADOS DO PROJETO DE PESQUISA

Título da Pesquisa: ESTUDO DAS HEMOGLOBINOPATIAS ESTRUTURAIS E DE SÍNTESE EM MÃES E

RECÉM-NASCIDOS DA CIDADE DE MANAUS-AMAZONAS

Pesquisador: José Pereira de Moura neto

Área Temática: Genética Humana:

(Trata-se de pesquisa envolvendo Genética Humana que não necessita de análise

ética por parte da CONEP;);

Versão: 2

CAAE: 37941514.4.0000.5020

Instituição Proponente: Faculdade de Ciencias Farmaceuticas

Patrocinador Principal: Fundação de Amparo à Pesquisa do Estado do Amazonas - FAPEAM

DADOS DO PARECER

Número do Parecer: 897.779 Data da Relatoria: 25/11/2014

Considerações sobre os Termos de apresentação obrigatória:

O Projeto em tela é um estudo aprovado pelo PPSUS e contem todos os elementos inerentes a um trabalho científico com :Introdução, Objetivos; Metodologia; Cronograma de execução e Orçamento Financeiro;

TCLE - Contemplado

Termo de Assentimento para os menores - Contemplado

Folha de Rosto - Contemplado

Curricula disponivel dos Pesquisadores- Contemplado Termo de Anuência do Hospital D.Lindu - Contemplado.

Recomendações:

rão se Aplica

Conclusões ou Pendências e Lista de Inadequações:

Diante do exposto somos de Precer pela Aprovação.SMJ

Situação do Parecer:

Aprovado

Necessita Apreciação da CONEP:

Não

Considerações Finais a critério do CEP:

APÊNDICE 2 TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO (TCLE) PARA MÃES DE 18 ANOS

Eu,			, Co			
mais, detentora d						
voluntária do est						
UMA MATERNID						
do Dr. José Pere						
incluindo a nature	za, duração e ob	jetivo do est	tudo, os mé	todos e m	neios atra	avés dos
quais deve ser cor	nduzido e as inco	nveniências	e riscos qu	ie podem	ser natur	ralmente
esperados	foram		explic	cados		por
				(nome	do inves	stigador)
no(a)				(tele	fone).	
Entendo também						
consentimento e	retirar-me do es	tudo sem s	ofrer nenhi	uma puni	ção ou p	erda de
direitos.						
Nome do responsa						
Assinatura do resp				D	ata/_	/
Endereço						
Telefone contato:						
Número de identic	dade					
Número no estudo)					
Este termo de co						•
cópia será arquiva						
Eu presenciei a e						
ao responsável o			estemunho	a assina	atura do	pai ou
responsável pelo i	menor neste docu	ımento.				
Nome da	testemunha	-	1 (1	etra	de	forma)
Assinatura da test	emunha-1			D	ata/_	_/
	investigador					Data
//	_					
Nome	do	investigad	or	(letra	ì	de
forma)				•		

APÊNDICE 3 TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO (TCLE) PARA MENOR DE 18 ANOS - RECÉM-NASCIDOS

· · ·	pação do menor
	sua ATIAS EM UMA
MATERNIDADE PÚBLICA DE MANAUS-AMAZONAS", sob a	
José Pereira de Moura Neto. A participação do menor é totaln	-
sua permissão pode ser retirada a qualquer momento, não resul	
As implicações de sua participação voluntária, incluindo a n	atureza, duração e
objetivo do estudo, os métodos e meios através dos quais deve	
inconveniências e riscos que podem ser naturalmente esperado	•
por	(nome do
investigador no(a)	
(endereço e telefone). Entendo também que eu tenho permiss momento revogar o meu consentimento e retirar o paciente do	
nenhuma punição ou perda de direitos. Este termo de consent	
impresso em duas vias, sendo que uma cópia será arquivado	
responsável, e a outra será fornecida a você.	p pq
Nome do responsável (letra	de forma)
Assinatura do	responsável
Data / /	10000110010
Endereço	
Telefone contato:	(92)
Número de	identidade
	laomiaaac
Número no	estudo
Número no	
Eu presenciei a explicação acima descrita, confirmando a opor	estudo — tunidade concedida
Eu presenciei a explicação acima descrita, confirmando a opor ao responsável de formular perguntas e testemunho a ass	estudo — tunidade concedida
Eu presenciei a explicação acima descrita, confirmando a opor ao responsável de formular perguntas e testemunho a ass responsável pelo menor neste documento.	estudo — tunidade concedida sinatura do pai ou
Eu presenciei a explicação acima descrita, confirmando a opor ao responsável de formular perguntas e testemunho a ass	estudo — tunidade concedida

EXPLICAÇÃO DO TERMO DE CONSENTIMENTO

"ESTUDO DAS HEMOGLOBINOPATIAS ESTRUTURAIS EM RNS DE UMA MATERNIDADE PÚBLICA DE MANAUS-AMAZONAS"

Investigador principal

Dr. José Pereira de Moura Neto

Faculdade de Ciências Farmacêuticas
Universidade Federal do Amazonas-UFAM

As anemias são doenças que podem ocorrer mais frequentemente por falta de alimentação adequada, por parasitoses, mas também existe uma causa muito encontrada na nossa população e que pode ser herdada do pai e da mãe, devido a um defeito na substância que se une ao oxigênio e o leva por todo o nosso corpo. Esta substância é chamada de hemoglobina e uma das doenças mais comuns é a anemia falciforme.

As hemoglobinopatias hereditárias (anemias passadas de pai/mãe para o filho(a)) podem ocorrer de forma leve até grave em seus portadores e esta doença pode ser frequente em nossa população. Por isso, é importante realizar estudos que possam ajudar a compreender melhor esta doença e também colaborar para o surgimento de um novo tipo de tratamento e acompanhamento para ela.

Por esses motivos, você está sendo convidada a participar de uma pesquisa que envolverá diagnóstico, assistência e informações sobre estas anemias hereditárias. É de grande importância que você entenda os princípios gerais que se seguem e que serão aplicados a todos os participantes do nosso estudo:

- a) sua participação é totalmente voluntária;
- b) você poderá interromper sua participação antes ou em qualquer momento do estudo. Sua recusa em participar não envolverá punições ou perda de seus direitos constituídos;
- c) depois de lidas as explicações, você pode fazer qualquer pergunta necessária ao seu entendimento.

OBJETIVO DO ESTUDO

O objetivo deste estudo é fornecer o diagnóstico desta anemia, com as suas características, fornecendo acompanhamento médico aos portadores e proporcionando uma melhor qualidade de vida aos mesmos. Caso você concorde em participar, as amostras coletadas, durante a admissão da Maternidade, pela equipe do Laboratório da Fundação de Apoio ao Hemoam Sangue Nativo, serão destinadas à realização das análises laboratoriais.

DURAÇÃO DA SUA PARTICIPAÇÃO

O tempo previsto para a realização do nosso estudo será de aproximadamente 02 (dois) anos. Entretanto, os portadores da anemia serão assistidos pela equipe médica da Fundação Hospitalar de Hematologia e Hemoterapia-FHEMOAM para acompanhamento clínico

RISCOS, DANOS E DESCONFORTOS

O sangue será coletado através da utilização de materiais novos, estéreis e descartáveis, por pessoal habilitado e especializado, o qual são orientados a causar o mínimo possível de desconforto durante a coleta. As amostras para análises hematológicas, bioquímicas e moleculares serão retiradas das mesmas amostras coletadas para o diagnóstico, sem a necessidade de coletas extras.

BENEFÍCIOS

A participação neste projeto proporcionará benefícios aos indivíduos portadores de anemia, que possibilitará a realização do acompanhamento clínico, laboratorial e aconselhamento genético pelo Serviço de Referência em Triagem Neonatal.

COMPROMISSO COM A CONFIDENCIALIDADE DA IDENTIDADE DO VOLUNTÁRIO

Os registros da sua participação no estudo serão mantidos confidencialmente, sendo do conhecimento dos participantes do projeto e do médico que o acompanha.

NOVOS ACHADOS SIGNIFICATIVOS

Qualquer informação importante que surgir durante a sua participação no estudo e que possa contribuir para o melhor desenvolvimento clínico da doença em estudo será levada imediatamente ao seu conhecimento e do seu médico.

PESSOAS E LOCAIS A SEREM CONTATADAS PARA A OBTENÇÃO DE RESPOSTAS, E FORMULAÇÃO DE PERGUNTAS E MAIORES INFORMAÇÕES.

Por favor, entre em contato com uma das pessoas abaixo caso você necessite de maiores esclarecimentos.

Dr. José Pereira de Moura Neto - Coordenador do projeto - Laboratório de Análises Especializadas em Biologia Molecular - Contato: (92) 3305 000 – (92) 8187 0920 **Dra. Regina Neves Normando** - Farmacêutica Bioquímica/ Gerente do Laboratório do IMDL - Fundação de apoio ao HEMOAM Sangue Nativo – Contato: (92) 3643-8110 - (92) 3239-2323

Dra. Roberta da Silva Brito – Farmacêutica Bioquímica/Laboratório do IMDL-Fundação ao Apoio ao Hemoam Sangue Nativo – contato: (92) 8429-7888

Dra. Lecita Marreira de Lima Barros - Farmacêutica Bioquímica/Gerente do Laboratório de Hematologia da FHEMOAM – Contato: (092) 3655-0100

Dra. Lilliam Wallace - Farmacêutica Bioquímica/Setor de Triagem Neonatal FHEMOAM – Contato: (092) 3655-0100

Em caso de dúvidas com respeito aos aspectos éticos desta pesquisa, você poderá consultar:

COMITÊ DE ÉTICA EM PESQUISA DA UFAM-CEP/UFAM— na Rua Teresina, 495, Adrianópolis, Manaus-AM, telefone (092) 3305-5130.

Atesto o recebimento da cópia deste acordo, que é constituído pelos termos de explicação e de consentimento.

Assinatura	do	paciente				
Data/_	/					
Nome	do	paciente		(letra	de	forma)
Assinatura	da	testemunha	1			
Data/_	/					
Nome	da	testemunha	1	(letra	de	forma)

APÊNDICE 4 QUESTIONÁRIO – GESTANTES

1)	Número:Registro	o SoftLab:
2)	Nome:	
3)	Idade:anos	
4)	Idade gestacional (meses): 6 () 7	7()8()9()
5)	Quantidade de filhos? 1 () 2 () 3	() 4 () 5 () , 6 (), mais()
6)	Na atual gestação, realizou pré-nat	tal? Sim()Não()
7)	Na gestação atual, apresentou algu	uns dos problemas abaixo?
()	Pneumonia	() Infecção urinária
()	Dores ósseas	() Anemia
()	Pré-Eclâmpsia	() Outros
8)	Quantidade de abortos espontâneo	os? 0() 1() 2() 3() 4()
9)	Quantidade de partos prematuros?	0()1()2()3()4()
10) Quantidade de óbitos fetais intra-u	iterinos? 0() 1() 2() 3() 4()
11) Fez uso de cigarros durante a ges	tação? Sim()Não()
12) Conhece caso de Anemia na Fam	ília? Sim()Não()
13) Caso sim no item anterior, qual pa	rentesco?
Mâ	ie () Pai () Irmão () Irmã () Tio(;	a) () outro gual?

APÊNDICE 5 QUESTIONÁRIO – RECÉM-NASCIDOS

1)	Número:	Registro SoftLab:
2)	Nome:	
3)	Nome da mãe:	
4)	Qual o gênero?: Homem () Mulher ()
5)	Qual a data do nascimento	?/
6)	Gêmeos? I () II () III () I	V ()
7)	Qual a raça?	
()	branca () negra () pardo () amarela
8)	Peso ao Nascer? Ko	g Gramas
9)	Nutrição: LM() Fórmula lác	ctea() Enteral () Parenteral ()
10))Internação? UTI-NEO() U	CI-NEO() UCP-NEO()
11)	Caso sim no item anterior,	qual o leito?
12)	Caso sim no item anterior,	qual o motivo da internação?
Tra	anfusão () Prematuridade e	extrema()Outro()qual?
Ca	so teve necessidade de Tra	nsfusão qual a quantidade?
1	() 2 () 3 () Mais () quant	idade?
Ou	al a data da última Transfus	eão? / /

APÊNDICE 6 ORÇAMENTO

Uso nas Análises Hematológicas, Bioquímicas

CONSUMO	QTDADE	VALOR TOTAL R\$
Ponteiras amarelas 200 ul, marca VWR (1000 Unds)	20	850,00
Ponteiras com barreira 200 ul (10 raques com 96 Unds)	20	1362,00
Uso nas Análises Hematológicas, Bioquímicas e Moleculares	15 / 65	975,00
Microtubo Eppendorf, 1,5ml, Fundo Cônico, Axygen (1000 Unds) Uso nas Análises Hematológicas, Bioquímicas	09 / 86	774,00
Tubo Hemo Roxo EDTA K2 (100 Unds) Para Exame Hematológico do Hemograma	10 / 204	2040,00
Tubo Hemo Vermelho Siliconizado - Seco (100 Unds) Para Exames Bioquímicos	30 / 35	1050,00
Tubos com Gel Separador para Coleta a Vacuo 6 ml Para Exames Bioquímicos	35 / 49	1715,00
Kits para Hemograma -814 amostras Realização do Hemograma	05 / 340	1700,00
Tubos de vidros 12x75 caixa com 250 unidade Análises Bioquímicas	15 / 26	390,00
Kits Dosagem de Ferro Sérico (50 amostras) Análises Bioquímicas para Ferro Sérico	60 / 21	1260,00
Kit Dosagem de Ferritina – (100 amostras) Análises Bioquímicas para ferritina	30 / 70	2100,00
Kit Capacidade Ligação de Ferro (40 amostras) Análises Bioquímicas para complexão de ferro sérico	75 / 20	1500,00
Kit Bilirrubina Indireta BIOCLIN 100 testes Análises Bioquímicas para verificação de hemólise e perfil hepático	30 / 28,8	864,00
Kit Bilirrubina Direta BIOCLIN 100 testes Análises Bioquímicas para verificação de hemólise e perfil hepático	30 / 28,8	864,00
Colesterol Total e Frações - BIOCLIN 100 testes Análises Bioquímicas para verificação de lipídeos séricos	30 / 61,6	1848,00
Creatinina Sérica - BIOCLIN 250 testes Análises Bioquímicas para verificação de perfil renal	12 / 67,5	810,00
Uréia Sérica - BIOCLIN 250 testes Análises Bioquímicas para verificação de perfil renal	12 / 67,5	810,00
Kit para dosagem de Glicose BIOCLIN - 500 testes Análises Bioquímicas para verificação de glicemia sérica	06 / 168	1008,00
Kit de LDH cinético BIOCLIN - 250 testes Análises Bioquímicas para verificação de perfil de hemólise	12 / 65	780,00

Kit para determinação de triglicerídeos BIOCLIN - 200 testes Análises Bioquímicas para verificação de lipídeos séricos	15 / 165	2475,00
VARIANT II β-Thalassemia Short Program Reorder Pack Kit para genótipo de hemoglobina de adultos	03 / 6450	19350,00
VARIANT Sickle Cell Short Program Reorder Pack Kit para genótipo de hemoglobina de adultos	03 / 6950	20850,00
CONSUMO		117609,50
CAPITAL		
Geladeira Conservação de Reagentes, Sangue e Soro	02	3158,00
Freezer Conservação de Reagentes, Sangue e Soro	02	3714,00
Computador Digitação dos dados obtidos pelo questionário dos indivíduos da pesquisa. Busca bibliográficas e análises do banco de dados.	02	3398,00
CAPITAL		27770,00
TOTAL		145379,50

APÊNDICE 7

EQUIPE CIENTÍFICA DE APOIO AO DSENVOLVIMENTO DO PROJETO

Nome	Formação/ Titulação	Instituição	Atividades no Plano de Dissertação
José Pereira de Moura Neto	Bioquímico. Doutor	UFAM	Orientação e Coordenação do Projeto.
Roberta da Silva Brito	Bioquímica, Especialista	FSN	Realização Questionário/Entrevista Gestantes; Separação das amostras de recém-nascidos; Leitura e Interpretação dos Hemogramas/Reticulócitos; Realização do perfil de Hemoglobinas no HPLC; Leitura e Interpretação dos Cromatogramas; Consulta prontuários clínicos; Realização dos Testes Hematológicos e Bioquímicos;
Regina Neves Normando	Bioquímica, Especialista	FSN	Auxílio na separação das amostras de recém-nascidos; Auxílio na leitura de interpretação dos Hemogramas; Auxílio nos Testes Bioquímicos.
Lecita Marreira	Bioquímica, Especialista	FHEMOA M	Auxílio na separação das amostras de recém-nascidos; Auxílio na realização do perfil de Hemoglobinas no HPLC; Auxílio na leitura de interpretação dos Hemogramas/Reticulócitos/Cromatogramas.
Lilliam Wallace	Bioquímica, Mestre	FHEMOA M	Auxílio na realização do perfil de Hemoglobinas no HPLC; Auxílio na leitura de interpretação dos Hemogramas/Reticulócitos/Cromatogramas.
Ulisses Souza	Biológo, Bioquímico	FSN	Realização de exames hematológicos e dosagens bioquímicas/calibração dos aparelhos.

APÊNDICE 8 PROTOCOLO PARA DETECÇÃO DE HEMOGLOBINAS VARIANTES VARIANT SICKLE CELL SHORT PROGRAM

1) Fase Marcadores de tempo de retenção:

- a) Preparar os marcadores de tempo de retenção 1 (FAES) e 2 (FADC) adicionando 10 mL de água deionizada a cada frasco. Não utilizar frascos partidos ou frascos com pastilhas de descoloradas (castanhas);
- b) Agitar suavemente para dissolver e assegurar uma mistura completa.
- c) Deixar equilibrar durante 10 minutos a uma temperatura de 15 a 30°C.
- d) Os marcadores de tempo de retenção reconstituídos permanecem estáveis durante 21 dias guando armazenados a uma temperatura de 2 a 8°C

2) Iniciador de sangue total:

- a) Preparar o iniciador de sangue total adicionando 1 mL de água desionizada ao frasco. Não utilize frascos partidos ou frascos com pastilhas de liofilizado descoloradas (castanhas).
- b) Agitar suavemente para dissolver e assegurar uma mistura completa
- c) Deixar equilibrar durante 10 minutos a uma temperatura de 15 a 30°C
- d) O iniciador de sangue total reconstituído permanece estável durante 21 dias quando armazenado a uma temperatura de 2 a 8°C.

3) Fase de preparação das amostras:

- a) Para cada amostra de paciente, furar um disco de 3 mm de diâmetro no cartão de recolha.
- b) Colocar cada disco de 3 mm num frasco de amostras diferente.
- c)Adicionar 0,5 mL de água deionizada a cada frasco de amostra.
- d) Deixar equilibrar durante 30 minutos à temperatura ambiente.
- e)Remover o disco de cada frasco de amostra.
- f) Misturar cada frasco de amostra por inversão.
- g)Colocar o frasco de amostra no suporte de amostras VARIANT

4) Fase de Análise:

- a). Transferir 250 µL de cada um dos seguintes reagentes reconstituídos e amostras de pacientes preparadas para os frascos de amostras.
- b) Colocar os frascos nos números de recipiente indicados do suporte de amostras.
- c) Apertar a tecla START para iniciar a execução.
- d) Após a conclusão de cada execução, é automaticamente iniciado um ciclo de lavagem de 5 minutos. Após a lavagem do sistema, este entra em modo IDLE (inativo)

APÊNDICE 09

VALORES DE REFERÊNCIA EM SANGUE DE CORDÃO UMBILICAL

INDICES HEMATIMÉTRICOS

Índices	Média	DP
Eritrócitos (x10 ⁶ /µL)	4,10	0,48
Hemoglobina (g/dL)	14,7	1,9
Hematócrito (%)	44,1	5,2
VCM (fL)	107,7	5,8
HCM (pg)	35,8	2,0
CHCM (g/dL)	33,3	2,0
RDW (%)	17,4	0,9
Plaquetas (x10³/μL)	250	71
Leucócitos (x x10³/μL)	11,2	3,7
Linfócitos (%)	40,3	12,5
Neutrófilos (%)	45,3	12,3
Eritroblastos (%)	7,17	9,9

VCM:volume corpuscular médio;HCM:hemoglobina corpuscular média;CHCM:concentração hemoglobínica corpuscular média; RDW:amplitude de distribuição dos eritrócitos;DP:desvio padrão.