UNIVERSIDADE DO ESTADO DO AMAZONAS CENTRO DE ESTUDOS SUPERIORES DE ITACOATIARA

VANESSE DO SOCORRO MARTINS DE MATOS

ANÁLISE COMPARATIVA DE PLANOS DE MANEJO FLORESTAL EM PEQUENA ESCALA DO MUNICÍPIO DE BOA VISTA DO RAMOS - AMAZONAS

VANESSE DO SOCORRO MARTINS DE MATOS

ANÁLISE COMPARATIVA DE PLANOS DE MANEJO FLORESTAL EM PEQUENA ESCALA DO MUNICÍPIO DE BOA VISTA DO RAMOS - AMAZONAS

Monografia apresentada para obtenção do título de Bacharela em Engenharia Florestal, do Centro de Estudos Superiores de Itacoatiara, da Universidade do Estado do Amazonas.

Orientador: Luís Antônio de Araújo Pinto.

Itacoatiara

VANESSE DO SOCORRO MARTINS DE MATOS

ANÁLISE COMPARATIVA DE PLANOS DE MANEJO FLORESTAL EM PEQUENA ESCALA DO MUNICÍPIO DE BOA VISTA DO RAMOS - AMAZONAS

Monografia apresentada ao curso de Engenharia Florestal, da Universidade do Estado do Amazonas, como requisito obrigatório para a obtenção do título de bacharela em Engenharia Florestal.

Itacoatiara-AM, 05 de dezembro de 2018.

Nota: 10,00 (dez)

BANCA EXAMINADORA

Prof. Luís Antônio de Araújo Pinto – UEA
(Orientador)

Prof. Iane Barrocas Gomes - UEA

Prof. Susane Almeida de Carvalho - UEA

A meus queridos pais Edilson e Maria Lina, pela educação que me deram com valores e virtudes, a minha companheira Marluza Soares, por todo apoio incondicional durante esses longos anos de estudo, ao meu filho João Gabriel por toda paciência.

Dedico.

AGRADECIMENTOS

À Deus, que, por sua infinita graça e misericórdia, me iluminou e guiou meu caminho até aqui, por seu amor em todos os momentos.

À minha família, em especial aos meus pais Edilson Pereira de Matos e Maria Lina Martins de Matos, por todo o incentivo, apoio, conselhos e amor, sem os quais eu certamente não teria alcançado nada.

A minha companheira, parceira e amiga, Marluza Soares, por me incentivar a realizar meu sonho, por toda paciência ao logo desses cinco anos longe de casa, não tenho palavras para agradecer a você. Esse sonho só foi possível porque você segurou a minha mão e não largou por nada. Ao meu tesouro João Gabriel, por toda paciência em ficar longe da mamãe durante esses anos.

Aos meus irmãos, Vanuza (obrigada por sempre me apoiar nas minhas escolhas), Joílson, Valquiza (obrigada por tudo, por durante esses 5 anos, você sempre cuidar do meu filho, não tenho palavras para agradecer a você), Jamilson, Darlison e a Minha Caçula (obrigada por você sempre está presente nos momentos que precisei). Ao meu cunhado Guerreiro (por todo conhecimento compartilhado), a minha cunhada Neide (sou grata a você por tudo que fizeste por mim e pelo meu filho). A todos os meus sobrinhos (Stefanny, Yarlei, Igor, Lina Teresa, Lucas, Joyce, Jayme, Verônica, Jamilly, Edilson, Duan, Davi, Isadora, Riki, Antônia e Enna Heloisa), que de alguma forma também contribuíram para que o sonho da faculdade se tornasse realidade.

À todos os meus amigos da minha extraordinária turma 10: Maria Auxiliadora (que nossa amizade seja além dos portões da universidade), Amanda Mesquita, Amanda Lucena, Geone da Mata, Rubia Ribeiro, Roberta Moura, José Carlos, Anderson Reis, Lucas Fonseca (conhecer você foi sem dúvida, uma das melhores coisa que poderia ter acontecido na minha vida), João Serafim, Alexandre Garcia, Lennon Azevedo (que juntos formamos o melhor quarteto, eternamente grata pela amizade de vocês), Edmar Piris, Gisele Ferreira (obrigada por todos os momentos de alegria ao seu lado), Raildo Torquato (obrigada por todo incentivo, por toda ajudar na realização desse trabalho). Vocês foram fundamentais para minha formação, por isso merecem o meu eterno agradecimento.

As minhas amigas e parceiras de quartos, Alaeene (muito obrigada, pela sua amizade, por me aturar durante esses anos, saiba que sempre pode contar comigo), Ítala (Jhoy você não imagina o quanto sou feliz por ter conhecido você, sou muito grata por todos os momentos que passamos juntas aqui, pela cumplicidade, pelos favores, pelas pizzas, por me fazer raiva de vez

em quando, pelas nossas discursões que serviu para fortalecer ainda mais nossa amizade, sou eternamente grata pela sua companhia).

Ao meu orientador Professor Dr. Luís Antônio de Araújo Pinto pela orientação, amizade, confiança, incentivo, por dividir seus conhecimentos e pela constante disposição de ajudar em tudo. Obrigada, professor, por exigir de mim muito mais do que eu imaginava ser capaz de fazer.

Aos professores do Centro de Estudos Superiores de Itacoatiara, por todo conhecimento repassado durante esses anos de faculdade.

Aos meus queridos professores, Ademir Castro, Augusto Izuka, Eduardo Mafra, Francisco Medina, Iane Gomes, Louri Klemann, Luís Enrique Prates, Sanderleia Santos e Susane Carvalho, por terem sido os melhores professores, obrigada pelos conselhos, pelas conversas, pelas broncas, por todo ensinamento aqui repassado para que eu pudesse chegar até aqui, minha eterna gratidão.

Ao Instituto de Desenvolvimento Agropecuário e Florestal Sustentável do Estado do Amazonas, na pessoa da Sr.ª Nadiele Pacheco (Gerente de Apoio a Produção Florestal Madeireira), pela disponibilização dos dados, para realização desse trabalho.

Aos demais amigos que fiz durante a caminhada e que participaram de alguma forma desta conquista.

"TUDO É CERTO em saindo das mãos do Autor das coisas, tudo degenera nas mãos do homem. Ele obriga uma terra a nutrir as produções de outra, uma árvore a dar frutos de outra; mistura e confunde os climas, as estações; mutila seu cão, seu cavalo, seu escravo; transtorna tudo, desfigura tudo."

Jean-Jacques Rousseau

RESUMO

Para atender às exigências legais existentes no estado do Amazonas, foi instituída uma categoria de manejo florestal denominada Manejo Florestal em pequena escala, buscando atender pequenos produtores do interior do estado em propriedade de até 500 hectares. Por meio do Instituto de Desenvolvimento Agropecuário e Florestal Sustentável do Estado do Amazonas (IDAM) foi fornecida assistência técnica para os pequenos produtores que desejassem realizar o manejo de pequena escala em suas propriedades. O levantamento das espécies de interesse comercial para estes produtores é importante para avaliar o potencial de cada área. Nesse contexto, o objetivo deste trabalho foi de analisar as diferenças fitossociológica das áreas de Manejo Florestal em Pequena Escala no Município de Boa Vista do Ramos – AM. Foram analisados 30 planos de manejo em 03 (três) diferentes áreas, com 10 (dez) planos de manejo por área, totalizando 300 ha, sendo inventariados 10 ha em cada plano de manejo. Estas áreas são: Curuçá, Monte Horebe e São Tomé. Foram utilizados os parâmetros da estrutura horizontal da vegetação para o conhecimento da fitossociologia das espécies, assim como os índices de diversidade de Shannon (H'), o índice de dominância de Simpson (C) e índice de equabilidade de Pielou (J'). O inventário florestal apresentou 1.130 indivíduos representados por 76 espécies na área Curuçá, 1.108 indivíduos distribuídos em 75 espécies na área São Tomé e 1.082 indivíduos representados por 85 espécies na área Monte Horebe. Os parâmetros dendrométricos estudados nas três áreas possuem um número total de árvores (NT) de 3.320 indivíduos; abundância (AB) de 33,20 árvores/ha; volume total de 12.665,23 m³; volume por hectare de 126,65 m³; área basal total de 1.165,82 m²; e, área basal por hectare de 11,69 m². O índice de importância da espécie (IND) das três áreas mostrou que todas possuem espécies com bom potencial para o manejo florestal. As análises de distribuição por classe de diâmetro para as três áreas de estudo mostraram unanimidade no comportamento dessa distribuição, com distribuição em "J reverso" para todas as áreas. Quando comparado os resultados dos descritores fitossociológicos das três áreas, pode-se perceber que as espécies, Manilkara huberi (Ducke) Chevalier da Família Sapotaceae, Hymenaea courbaril Linn. da família Leg. Caesalpinioideae, Goupia glabra Aubl. da família Celastraceae, Lecthis pisonis Cambess. da família Lecythidaceae, Nectandra discolor (H.B.K) Ness da família Lauraceae, estão presentes com um total 1.076 indivíduos distribuídos nas três áreas, os demais 2. 244 indivíduos, se encontram distribuídos nas demais famílias. A diversidade de espécies, estimada pelo índice de diversidade Shannon entre as três áreas, não tiveram variação, apresentando um valor médio de H' 3,84, qual representa um relativo valor elevado de diversidade florística. O índice de equabilidade de Pielou (J) das três áreas não apresentaram diferença, tendo em média 0,86, o que significa que não há a dominância de uma ou de um pequeno grupo de espécies nas áreas, indicando alta heterogeneidade florística.

Palavras-chave: Dendrometria, Inventário Florestal, Fitossociologia.

ABSTRACT

In order to obey th legal requirements in the state of Amazonas, a category of forest management was instituted called Small Scale Forest Management, this category aims to assist small producers of the state interior with lands up to 500 hectares. Through the Instituto de Desenvolvimento Agropecuário e Florestal Sustentável do Estado do Amazonas (IDAM), technical assistance was provided to small producers wishing to carry out small-scale management on their properties. The survey of the species of commercial interest for these producers is important to evaluate the potential of each area. In this context, the objective of this work was to analyze the phytosociological differences of Small Scale Forest Management in the municipality of Boa Vista do Ramos - AM. A total of 30 Forestry Management Plans were analyzed in 03 (three) different areas, with 10 (ten) management plans per area, with a total number of 300 ha, and 10 ha in each management plan. These areas are: Curuçá, Monte Horebe and São Tomé.Phytosociological parameters were used to analyse the horizontal structure of the vegetation, as well as the Shannon diversity index (H '), the Simpson dominance index (C) and the Pielou equability index (J'). The forest inventory showed 1,130 individuals represented by 76 species in the Curuçá area, 1,108 individuals distributed in 75 species in the São Tomé area and 1,082 individuals represented by 85 species in the Monte Horebe area. The dendrometric parameters studied in the three areas have a total number of trees (NT) of 3,320 individuals; abundance (AB) of 33.20 trees / ha; total volume of 12,665.23 m³; volume per hectare of 126.65 m³; total basal area of 1,165.82 m²; and, basal area per hectare of 11.69 m². The Importance Species Index (IND) of the three areas showed that all species have good potential for forest management. The analysis of distribution by diameter class for the three areas of study showed unanimity in the behavior of this distribution, with distribution in "Reverse J" for all areas. When comparing the results phytosociological descriptors for the three areas, it can be seen that the species, Manilkara huberi (Ducke) Chevalier of Sapotaceae Family, Hymenaea courbaril Linn. of family Leg. Caesalpinioideae, Goupia glabra Aubl. of family Celastraceae, Lecthis pisonis Cambess. of family Lecythidaceae, Nectandra discolor (H.B.K) Ness of family Lauraceae, are present with a total 1,076 individuals distributed in the three areas, the other 2,244 individuals, are distributed in the other families. The diversity of species, estimated by the Shannon diversity index among the three areas, did not change, presenting an average value of H '3.84, which represents a relative high value of floristic diversity. The Pielou equability index (J) of the three areas showed no difference, averaging 0.86, which means that there is no dominance of one or a small group of species in the areas, indicating high floristic heterogeneity.

Key-words: Dendrometry, Forest Inventory, Phytosociology.

LISTA DE ILUSTRAÇÕES

Figura 1 – Mapa de localização da área de estudo, no município de Boa Vista do Ramos
Amazonas. 24
Figura 2 - Distribuição percentual de indivíduos arbóreos das 10 principais famílias botânica
amostradas, nos três ambientes estudados
Figura 3 - Curva acumulativa do número de espécies apresentado nas três áreas inventariadas
Figura 4 - Principais espécies ocorrentes na área Curuçá de acordo com o índice de importância
da espécie (IND)
Figura 5 - Principais espécies ocorrentes na área Monte Horebe de acordo com o índice de
importância da espécie (IND)
Figura 6 - Principais espécies ocorrentes na área São Tomé de acordo com o índice de
importância da espécie (IND)
Figura 7 - Estruturas diamétricas das espécies inventariadas na área Curuça
Figura 8 - Estruturas diamétricas das espécies inventariadas na área São Tomé30
Figura 9 - Estruturas diamétricas das espécies inventariadas na área Monte Horebe
Figura 10 - Índice de Valor de Importância (IVI) para as dez espécies que mais se destacaran
na área Curuçá. 39
Figura 11 - Índice de Valor de Cobertura (IVC) para as dez espécies que mais se destacaran
na área Curuçá
Figura 12 - Índice de Valor de Importância (IVI) para as dez espécies que mais se destacaran
na área Monte Horebe
Figura 13 - Índice de Valor de Cobertura (IVC) para as dez espécies que mais se destacaran
na área Monte Horebe
Figura 14 - Índice de Valor de Importância (IVI) para as dez espécies que mais se destacaran
na área São Tomé
Figura 15 - Índice de Valor de Cobertura (IVC) para as dez espécies que mais se destacam na
área São Tomé

LISTA DE TABELA

Tabela 1 - Equações utilizadas para os cálculos dos parâmetros fitossociológicos.	27
Tabela 2 - Equações utilizadas para os cálculos dos Índices de Diversidade	28
Tabela 3 - Comparação da diversidade florística entre as três áreas estudadas	29
Tabela 4 - Distribuição por área do número total de árvores, abundância, volume tota	l, volume
por hectare, área basal total, área basal por hectare	32
Tabela 5 - Estrutura horizontal das 10 principais espécies da área Curuçá	38
Tabela 6 - Estrutura horizontal das 10 principais espécies da área Monte Horebe	41
Tabela 7 - Estrutura horizontal das 10 principais espécies da área São Tomé	44
Tabela 8 - Índices de Diversidades das Áreas Curuçá, Monte Horebe e São Tomé	47

SUMÁRIO

INTR	ODUÇÃO	14
1	OBJETIVOS	16
1.1	GERAL	16
1.2	ESPECÍFICOS	16
2	REVISÃO BIBLIOGRÁFICA	17
2.1	FLORESTA AMAZÔNICA	17
2.2	MANEJO FLORESTAL	17
2.3	PLANOS DE MANEJO FLORESTAL EM PEQUENA ESCALA (PMFPE)	18
2.3.1	Manejo Florestal Comunitário	19
2.4	INVENTÁRIO FLORESTAL A 100%	20
2.5	FITOSSOCIOLOGIA	20
2.5.1	Composição Florística	21
2.5.2	Descritores Quantitativos Estruturais	21
2.5.3	Diversidade da Vegetação	22
2.5.4	Estrutura diamétrica.	23
2.5.5	Índice de Importância da Espécie (IND)	23
3	MATERIAL E MÉTODOS	24
3.1	ÁREA DE ESTUDO	24
3.1.1	Vegetação	25
3.1.2	Clima	25
3.1.3	Relevo	25
3.1.4	Solos	25
3.1.5	Hidrografia	26
3.2	BASE DE DADOS	26
3.2.1	Dados do Inventário Florestal	26
3.2.2	Analise dos Dados	26
4	RESULTADOS E DISCUSSÃO	29

4.1	ESTRUTURA DA VEGETAÇÃO	29
4.1.1	Aspectos Florísticos	29
4.1.2	Curva Espécie – Área	31
4.1.3	Parâmetros Dendrométricos	32
4.1.3.	1 Índice de Importância das Espécies (IND's)	32
4.1.4	Estrutura Diamétrica	35
4.2	ASPECTOS FITOSSOCIOLÓGICOS	37
4.2.1	Estrutura Horizontal	37
4.2.2	Diversidade de espécies	47
CON	CLUSÕES	49
REFE	ERÊNCIAS	50
ANE	XOS	56

INTRODUÇÃO

A exploração das florestas primitivas no Brasil ficou proibida a partir do Código Florestal de 1965, quando técnicas de manejo florestal começaram a ser consideradas na prática de exploração florestal. Com o surgimento desta lei, que desde sua criação já sofreu várias mudanças, as empresas e comunidades foram obrigadas a usar práticas para uso dos recursos florestais de maneira sustentável, e o não cumprimento destas normas ficam sujeitas às penalidades previstas na legislação ambiental. Porém, na Amazônia, grande parte da exploração madeireira ainda é feita de forma não sustentável (AMARAL *et al.*, 2007). O estímulo da legalização da exploração madeireira, como o Programa de Proteção das Florestas Tropicais do Brasil – PPG7, com início na década de 1990 atraiu os pequenos produtores de madeira, tendo em vista que os mesmos dependem diretamente dos recursos florestais (CARVALHEIRO *et al.*, 2008).

Diante de todo os processos de mudanças nas leis ambientais o Manejo Florestal Comunitário tem experimentado forte processo de expansão na Amazônia e, de modo geral, vem se tornando uma das atividades mais exploradas pelo homem (BRAZ (2010). Essa atividade tem o potencial de geração de emprego e renda para os produtores familiares, além de contribuir para a manutenção da floresta amazônica (MEDINA; POKORNY, 2001).

Amaral (2005) afirma que a prática de manejo florestal em pequena escala ou manejo comunitário envolve em um contexto social e econômico entre diferentes tipos de relações interpessoais. O manejo florestal comunitário, em sentido amplo, engloba todas as atividades de manejo dos recursos florestais e tem como propósito fundamental melhorar as condições sociais, econômicas, emocionais e ambientais das comunidades rurais, a partir de suas próprias perspectivas.

A prática de manejo florestal em pequena escala é executada em pequenas propriedades, normalmente em uma única parcela de inventário, em que os dados coletados são de espécies previamente selecionadas que tenham alto valor comercial na região. Com isso, em uma grande área podem haver vários Planos de Manejo Florestais de Pequena Escala (PMFPE) em execução, e os dados destes planos podem contribuir para estudos fitossociológicos sobre a região.

A fitossociologia auxilia os PMFPE com informações sobre a estrutura de comunidades vegetais, além de destacar possíveis afinidades entre espécies ou grupo de espécies, acrescentando dados quantitativos a respeito da estrutura da vegetação (SILVA *et al.*,

2002). E através do estudo da estrutura e composição florística das florestas secundárias, podese destacar qual diversidade de espécies florestais são específicas de uma determinada área, assim como permite o levantamento do componente arbóreo identificado, em escala local, além dos padrões de diversidade e de distribuição espacial das espécies (CARVALHEIRO *et al.*, 2008).

O conhecimento das diferentes espécies nas comunidades vegetais é de grande importância para melhor compreensão da dinâmica que rege as relações bióticas da vegetação, bem como as suas relações com o meio abiótico (TELLO, 1995). Com isso, conhecer o comportamento das diferentes espécies possibilita identificarmos dinâmicas em determinados ecossistemas.

Neste contexto, é importante o conhecimento da composição florística e da estrutura da floresta permitindo o planejamento e execução de plano de manejo florestal sustentável, condução da floresta à uma estrutura balanceada, bem como práticas silviculturais adequadas.

1 OBJETIVOS

1.1 GERAL

Analisar as diferenças fitossociológica das áreas de Manejo Florestal em Pequena Escala no Município de Boa Vista do Ramos – AM.

1.2 ESPECÍFICOS

- ✓ Descrever a composição florística e estrutura horizontal dos planos de manejo florestal estudados;
 - ✓ Comparar estruturalmente as áreas inventariadas dos planos de manejos florestal;
- ✓ Estimar a diversidade da vegetação entre as áreas inventariadas constantes nos planos de manejo florestal por meio dos índices de diversidade de Shannon-Weaver, Índice de dominância de Simpson e Índice de Equabilidade de Pielou.

2 REVISÃO BIBLIOGRÁFICA

2.1 FLORESTA AMAZÔNICA

Conhecida por possuir uma área de 6,4 milhões de metros quadrados, a Floresta Amazônica, está presente em nove países da América do Sul, que equivalem a 59% do território brasileiro (PEREIRA *et al.*, 2010). O Brasil apresenta um total 63%, quatro milhões de quilômetros quadrados. Os demais 37% (2,4 milhões de quilômetros quadrados) restantes estão distribuídos entre o Peru (10%), Colômbia (7%), Bolívia (6%), Venezuela (6%), Guiana (3%), Suriname (2%), Equador (1,5%) e Guiana Francesa (1,5%) (PEREIRA *et al.*, 2010).

O bioma Amazônia constitui uma região fitogeográfica bem distinta, caracteriza-se pela sua fisionomia, no que diz respeito à paisagem formada pela floresta tropical úmida, evidenciando a grande complexidade dos grupos vegetais que a compõem (LIMA, 2004).

A floresta amazônica nos últimos anos tem tido uma atenção especial, pelo fato de possuir a maior reserva de recursos florestais, e ser depositária da maior biodiversidade do planeta. No entanto, a exploração dos recursos madeireiros e não-madeireiros estão sendo realizado de forma irracional, uma vez que predomina a colheita madeireira sem o adequado planejamento. Essa colheita é caracterizada pela máxima retirada de madeira por unidade de área, das espécies de valor comercial, promovendo danos à floresta remanescente (PINTO *et al.*, 2002).

A sua grande extensão tem apontado como sendo uma das causas principais que dificultam as investigações científicas e, consequentemente, um conhecimento satisfatório do potencial e limitações dos recursos naturais da Amazônia. Entre esses, podemos citar a complexidade dos ecossistemas, extensão geográfica, as interações entre os fatores bióticos e abióticos, sobretudo em sua composição florística (LIMA-FILHO *et al.*, 2001).

2.2 MANEJO FLORESTAL

O Manejo Florestal consiste no conjunto de técnicas e planejamento empregados na captação de matéria-prima, respeitando de tal maneira os mecanismos de sustentação do ecossistema e garantido, assim, a conservação da floresta para as futuras gerações (AMAZONAS, 2008). De acordo com Higuchi (1991), o manejo florestal pode ser compreendido como uma parte da ciência florestal que aborda um conjunto de princípios,

técnicas e normas, cujo objetivo é organizar e controlar os fatores de produção para alcançar os objetivos definidos; onde seus princípios estão pautados na produção contínua e sustentável dos recursos florestais.

O Manejo Florestal Sustentável consiste na; Administração da floresta para a obtenção de benefícios econômicos, sociais e ambientais, respeitando-se os mecanismos de sustentação do ecossistema objeto do manejo e considerando-se, cumulativa ou alternativamente, a utilização de múltiplas espécies (CONAMA, 2009).

De acordo com o Juvenal e Mattos (2002), o Manejo Florestal Sustentável (MFS) é definido como sendo "a administração da floresta para a obtenção de benefícios econômicos e sociais, respeitando-se os mecanismos de sustentação do ecossistema objeto do manejo". Para Rocha (2001), o manejo florestal é um conjunto de princípios, normas e técnicas, com a finalidade de organizar e controlar as ações necessárias para alcançar objetivos definidos.

A extração de madeira na região amazônica de forma ilegal é uma realidade difícil de ser mudada e vem aumentado como o passar dos anos. Durante muito tempo, a exploração madeireira foi realizada sem a devida aplicação dos conceitos de manejo florestal. Atualmente, mesmo com essa necessidade, uma pequena parte da floresta é manejada levando-se em consideração a sustentabilidade madeireira e, menos ainda, outros fatores que dizem respeito à diversidade (BRAZ, 2010).

2.3 PLANOS DE MANEJO FLORESTAL EM PEQUENA ESCALA (PMFPE)

Na Amazônia brasileira, os pequenos produtores, organizados através de associações têm buscado a legalização da exploração madeireira dentro dos órgãos que regulamentam esta prática. A primeira conquista dos pequenos produtores foi quando a Instrução Normativa Nº 04, de 28 de dezembro de 1998 do Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA, que estabeleceu as regras para o manejo florestal comunitário. Em 2002 foi criado um Grupo de Trabalho para discutir o Manejo Florestal Comunitário – GT MFC, baseado em diferentes experiências de manejo florestal comunitário (MFC). Para Carvalheiros *et al.* (2008), trata-se de um grupo da sociedade civil, composto por representantes com experiências de manejo florestal e de instituições assessoras destas experiências na Amazônia brasileira.

Sendo assim, o MFPE, tiveram uma evolução considerável, no número de projetos de manejo florestal aprovados (ANDRADE, 2014). Passou-se de 17 Planos de Manejo Florestal

de Pequena Escala - PMFPE, no final da década de 1990, para 1.742 em 2006, beneficiando 5.459 famílias em aproximadamente 851.103 hectares (AMARAL *et al.*, 2007). Estes mesmos autores indicam que os estados da Amazônia que apresentam o maior número de planos de manejo comunitário são o Estado do Acre, seguido do Pará e do Amazonas.

Com a implantação do Programa Zona Franca Verde pelo Governo do Estado do Amazonas foram desenvolvidos diversos projetos para o fomento e estruturação da cadeia produtiva de móveis no interior do Amazonas. A partir do Projeto Floresta Viva foi estruturada a cadeia produtiva em três polos considerados por sua representatividade: o polo do Alto Solimões (municípios de Tabatinga, Benjamin Constant e Atalaia do Norte), o polo de Carauari, e o polo do baixo Amazonas (Boa Vista do Ramos e Maués) (SILVA; KIBLER, 2008).

2.3.1 Manejo Florestal Comunitário

No final dos anos 90, duas experiências de manejo florestal comunitário (MFC) foram pioneiras no Amazonas. Com apoio de projetos de custos elevados, financiados por doações estrangeiras e executados por ONGs, foi possível o envolvimento de populações ribeirinhas na atividade de manejo florestal na Reserva de Desenvolvimento Sustentável Mamirauá e em terras públicas do município de Boa Vista do Ramos (MEDINA; POKORNY, 2011).

Em 1998 no município de Boa Vista do Ramos, o Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA) iniciava os primeiros diagnósticos e reuniões com o objetivo de promover o manejo florestal comunitário (WALDHOFF; VIDAL, 2015).

No ano seguinte, foi criada a Associação Comunitária Agrícola e de Extração de Produtos da Floresta (ACAF). Com o apoio financeiro do Programa de Proteção às Florestas Tropicais Brasileiras (PPG7) do ProManejo e apoio técnico do Instituo de Educação, Ciência e Tecnologia do Amazonas (IFAM), vários cursos de capacitação e intercâmbios de experiências foram realizados, fortalecendo o capital humano local. No entanto a Associação enfrentou sérios problemas de ordem fundiária, uma vez que a área destinada ao MFC não possuía titulação (WALDHOFF; VIDAL, 2015).

O município de Boa Vista do Ramos teve o primeiro manejo florestal comunitário certificado no Amazonas em 2005, passando a ser reconhecido como referência regional. Porém, com as dificuldades operacionais dos PMFS, em 2008 a ACAF perdeu sua certificação.

2.4 INVENTÁRIO FLORESTAL A 100%

O inventário florestal 100%, também conhecido como "censo florestal", é uma etapa fundamental para o planejamento do manejo florestal. Nele é feito um levantamento detalhado de todas as espécies que estão presentes dentro da área a ser manejada.

Com essa atividade é possível saber o potencial produtivo da floresta (madeira e outros produtos não madeireiros como espécies frutíferas, espécies que produzem óleo, resinas, cascas e cipós). Todas as árvores de valor comercial são mensuradas durante o inventário florestal 100% e são anotadas informações relevantes para a etapa de exploração, como a ocorrência de grotas, de cursos d'água, existência de ninhos de pássaros, entre outras (REIS *et al.*, 2013).

As florestas são geralmente extensas, com isso se demanda muito tempo na realização do inventario 100%, dificultando uma abordagem de todos os seus indivíduos. Por isso, o inventário 100% só se justifica nas avaliações de populações pequenas, de grande importância econômica, ou em trabalhos de pesquisa cujos resultados exijam exatidão (PELLICO-NETO, 1997).

Segundo Sobrinho *et al.* (2010), o inventario 100% na face pré-exploratória tem como principais atividades: mensuração de todos os indivíduos existentes na área demarcada e cuidados principais relacionados com o erro de medição. Para Araújo (2006), os inventários florestais nos dão subsídios necessários para o planejamento das atividades de exploração e do manejo propriamente dito, tais como: espécies a explorar, ciclo de corte e tratamentos silviculturais.

A avalição dos recursos florestais existentes dentro da área a ser manejada são analisados a partir dos dados de inventário florestal. O inventário a 100% ou pré-exploratório executado em planos de manejo florestal, tem como principal atividade, inventariar o estoque de madeira existente naquela área.

2.5 FITOSSOCIOLOGIA

A fitossociologia estuda as comunidades vegetais, sua origem, estrutura, classificação e sua inter-relação e dependência aos fatores bióticos em determinado ambiente, ou seja, cada indivíduo que habita determinado local atua sobre os demais, assim como os fatores externos.

Os primeiros levantamentos fitossociológicos realizados no Brasil empregaram o método de parcelas, já o método quadrante foi introduzido por Martins (1979) em seu estudo

realizado no Parque Estadual de Vassununga, em São Paulo.

Segundo Tello (1995), o estudo fitossociológico, além de fornecer dados sobre a composição florística de uma determinada área, pode reportar informações sobre possíveis afinidades entre espécies ou grupos. Segundo o autor, essas associações são consideradas pela particularidade do ambiente, tornando possível a compreensão de fitofisionomias da floresta amazônica. (Op.cit.). Para Manzatto (2005), os estudos relacionados à composição florística e à estrutura fitossociologia são fundamentais para o levantamento de subsídios no que se refere à compreensão da estrutura e da dinâmica da formação e regeneração de comunidades vegetais.

A fitossociologia é importante quando os conhecimentos relacionados à vegetação são colocados em discussão, uma vez que, o conhecimento da composição e estrutura das plantas são essenciais para o entendimento da dinâmica vegetacional (ESCOBAR, 2016).

2.5.1 Composição Florística

Dentre os métodos de descrição da vegetação existem aqueles que tem como base à análise fisionômica, estrutural ou florística da vegetação. Os métodos de descrição baseados na composição florística fazem a identificação das espécies vegetais de uma determinada comunidade. No levantamento são identificados a família, gênero e espécie dos indivíduos, e são registradas informações de aspectos dendrométricos e fitossociológicos (FELFILI, 2000).

Segundo Costa *et al.* (2002), o conhecimento da composição florística da floresta aliado a levantamentos estruturais, constituem os aspectos mais importantes para a implantação de qualquer plano de manejo.

O estudo da composição florística permite o planejamento e o estabelecimento de sistemas de manejo com produção sustentável, condução da floresta a uma estrutura balanceada e técnicas silviculturais adequadas baseadas na ecologia de cada tipo de formação vegetal (SOUZA *et al.*, 2006).

Vários estudos foram realizados no Brasil a fim de avaliar a composição florística e estrutura das florestas localizadas em diversas tipologias. Na região Amazônica cita-se os estudos desenvolvidos por Barros (1986), Gomide (1997), (Silva *et al.*, 2008).

2.5.2 Descritores Quantitativos Estruturais

A análise da estrutura horizontal de ecossistemas vegetais permite quantificar as

espécies em relação às outras, verificando a distribuição espacial de cada espécie, esta pode ser avaliada por meio dos parâmetros fitossociológicos frequência, Densidade e Dominância que são utilizados tanto para espécies quanto para famílias (MUELLER-DOMBOIS; ELLENBERG,1974). Estes parâmetros são definidos como:

Frequência (F) - é a probabilidade de se encontrar uma espécie numa unidade amostral, mede a regularidade de ocorrência de cada espécie sobre a área. Frequência relativa (FR) como sendo a proporção, expressa em porcentagem, entre a frequência absoluta de cada espécie e a frequência absoluta total por unidade de área. Frequência absoluta (FA) é uma medida, expressa em porcentagem, que caracteriza a ocorrência de uma espécie em um número de unidades de amostra ou quadrados de igual tamanho, dentro de uma associação vegetal.

Densidade (D) - expressa, por unidade de área, a existência de uma espécie em função de um conjunto de espécies. Seu valor relativo é dado em função da proporção de indivíduos de determinada espécie em relação ao número total de indivíduos amostrados (MARTINS, 1993).

Dominância (Do) - baseia-se na proporção de tamanho, volume ou cobertura de cada espécie em relação ao espaço ou área basal. Permite a potencialidade de produção da floresta.

Dominância absoluta (DoA) - de uma espécie consiste na soma da área basal ou seccionais dos troncos (1,30 m) de todos os indivíduos da espécie presentes na amostra, por unidade de área e a dominância relativa (DoR), como sendo a porcentagem entre área basal total da espécie e a área basal total por unidade de área.

O Valor de Importância (VI) - é demonstrado através de uma apresentação numérica, a importância que cada espécie ocupa no ecossistema estudado e estar fundamentada em parâmetro dendrométricos, área basal, distribuição e número indivíduos (MATOS; AMARAL, 1999).

2.5.3 Diversidade da Vegetação

A diversidade refere-se à variedade de espécies de organismos vivos de uma determinada comunidade (GARDIN, 2011). Os índices florísticos são as ferramentas primárias para avaliação dos dados, além de descreverem o quão diverso um ambiente pode ser em comparação a outro (SOUSA, 2008).

Estudar a diversidade é muito complexo, a qual está composta por dois elementos principais, variação e abundancia de espécies. Porém o índice de diversidade de Shannon (H'),

sempre foi o mais usado para indicar a diversidade das espécies de uma comunidade vegetal, pelo fato de combinar o número de espécies presentes e a densidade relativa da espécie em um único valor (LIMA, 2010).

O Índice de equabilidade de Pielou (J') é o índice de igualdade mais utilizado, expressa a relação entre a diversidade real e a diversidade máxima, podendo variar de zero a um. Se tivermos J' = 0, significa dizer que todas as árvores pertencem a uma espécie e se tivermos J' = 1, significa dizer que todas as espécies estão igualmente representadas (GARDIN, 2011).

Já o índice de Simpson, tem formulação derivada da teoria das probabilidades e é utilizado em análises quantitativas de comunidades biológicas. Este índice fornece a ideia da probabilidade de se coletar aleatoriamente dois indivíduos da comunidade e, obrigatoriamente, pertencerem às espécies diferentes (GORENSTEIN, 2002).

2.5.4 Estrutura Diamétrica.

A distribuição diamétrica serve para caracterizar tipologias vegetais, regimes de manejo, processos de dinâmicas de crescimento e produção, assim como também grupos ecológicos de espécies, sobre tudo como verificador de sustentabilidade ambiental.

Portanto, a estrutura do povoamento demonstra os hábitos de crescimento da espécie, das condições ambientais e práticas de manejo (FINGER, 1992). O estudo das distribuições permite conhecer as estruturas dos povoamentos, entendendo como tal a distribuição de espécies e dimensões das árvores em relação a um hectare (PINTO, 2002).

Segundo Felfili (2001), a estrutura diamétrica reflete às adaptações e modificações do ecossistema. Para Paula *et al.* (2004), a distribuição diamétrica é necessária para a compreensão da sucessão florestal e permite a avaliação prévia de condições da dinâmica da floresta, possibilitando previsões futuras quanto ao desenvolvimento da comunidade vegetal.

2.5.5 Índice de Importância da Espécie (IND)

Para Araújo (2002), o Índice de Importância da Espécie (IND) é um valor percentual, expresso pela média aritmética simples dos percentuais de cada espécie para número total de árvores da espécie (NT), volume total das árvores (VT/m³) e área basal total da espécie (ABsT/m²), em relação aos respectivos totais (todas as espécies) dessas variáveis para a área inventariada.

3 MATERIAL E MÉTODOS

3.1 ÁREA DE ESTUDO

O município de Boa Vista do Ramos localiza-se no sudoeste do Amazonas, na região do Baixo Amazonas (Figura 1), sua área territorial é de 2.587 km² e limita-se com os municípios de Barreirinha, Maués, Itacoatiara e Urucurituba (IBGE, 2016).

O município está dividido em cinco macrorregiões, denominadas de acordo com o seu principal curso d'água. Essas áreas diferenciam-se principalmente quanto ao tipo de água predominante e quanto à forma dominante de vegetação. Dessa maneira, identificamos as regiões do Massauari, Urubu, Lago Preto, Paraná do Ramos de cima e Paraná do Ramos de baixo.

Segundo o Instituto Brasileiro de Geografia e Estatística, em 2017 o município possuía uma população estimada em 18.483 mil habitantes (0,43% da população do Estado) divididos em 60% na área rural e 40% na área urbana, com densidade demográfica de 5,79 habitantes/km².

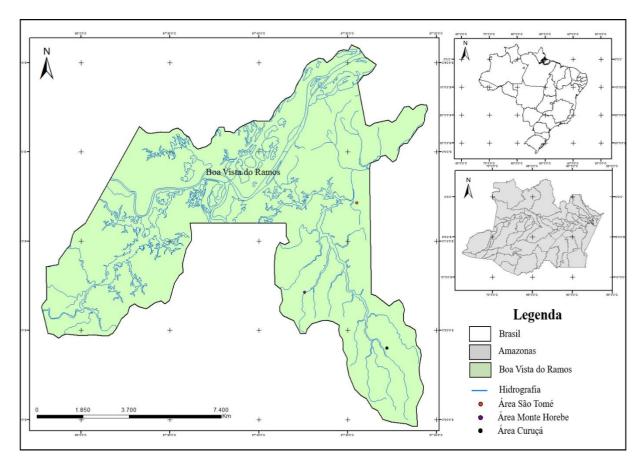


Figura 1 – Mapa de localização da área de estudo, no município de Boa Vista do Ramos - Amazonas.

3.1.1 Vegetação

A vegetação original da área de estudo é classificada pelo MDA (2006) como Floresta Ombrófila Densa, apresentando um mosaico de estágios de sucessão em função da exploração madeireira e agricultura. Contudo, no Território Baixo Amazonas, há ocorrências de outros tipos de vegetação como Floresta Ombrófila Aberta Submontana com cipós, Floresta Ombrófila Aberta Submontana com palmeiras, Floresta Ombrófila aberta Terras Baixas com palmeiras, Floresta Ombrófila Densa Aluvial Dossel uniforme, Floresta Ombrófila Densa Submontana Dossel emergente, Floresta Ombrófila Densa Submontana Dossel uniforme, Campinarana Florestada sem palmeiras, Campinarana Gramíneo - lenhosa sem palmeiras, Savana Arborizada sem floresta de-galeria, Savana Florestada, Savana Gramíneo - Lenhosa sem floresta-de-galeria, Savana Parque com floresta-de-galeria e Savana Parque sem floresta-de-galeria.

3.1.2 Clima

Segundo a classificação do RADAMBRASIL (1975), o tipo climático do município de Boa Vista do Ramos é classificado como equatorial quente e úmido, tendo de um a dois meses secos durante o ano. A temperatura anual média é de 27°C, com pequena amplitude térmica, e a umidade relativa superior a 80%. A pluviosidade é elevada variando de 2.050 mm a 2.250 mm ao ano.

3.1.3 Relevo

O relevo e constituído pelo tipo planície Amazônica, variando de plano a suave ondulado. O município não apresenta serras, apenas terra firme acidentada e terra de várzea com restingas, que são inundadas no período de enchentes dos rios (MDA, 2006).

3.1.4 Solos

Os solos do Território Baixo Amazonas e formado principalmente por latossolo amarelo e uma grande porção na parte norte dos municípios de Urucará, Nhamundá e São Sebastiao do Uatumã por solos do tipo argissolo vermelho amarelo, mas são encontrados

também areia quartzosa, areia quartzosa hidromorfica, cambissolo, espodossolo, gleissolo, latossolo vermelho-amarelo, plintossolo, solo aluvial, solo litolico e solo petroplintico (MDA, 2006).

3.1.5 Hidrografia

A rede hidrográfica da região do Baixo Amazonas e constituída por vários rios, lagos, furos e igarapés. Dentre os mais importantes corpos de água, está o rio Amazonas. Entretanto, no município de Boa Vista do Ramos, uns dos principais rios é o Paraná do Ramos. O rio Paraná do Ramos é navegável durante o ano todo (MDA, 2006).

3.2 BASE DE DADOS

3.2.1 Dados do Inventário Florestal

Os dados utilizados nesse trabalho foram obtidos a partir de um banco de dados de 30 planos de manejo, onde foi realizado inventário florestal (100%). Os dados foram fornecidos pelo Instituto de Desenvolvimento Agropecuário e Florestal Sustentável do Estado Amazonas − IDAM, órgão responsável pela elaboração e coleta de dados do PMFPE, consistem em um censo de uma pequena área da propriedade objeto da elaboração do plano de manejo, com uma prévia consulta aos proprietários das áreas a serem exploradas, identificando das espécies mais ocorrentes na área e quais oferecem maior valor para comercialização. A identificação botânica foi realizada por mateiros da região e foram coletados dados de indivíduos com diâmetro à altura do peito ≥ 30 cm.

3.2.2 Análise dos Dados

Foram analisados 30 planos de manejo em 03 (três) diferentes áreas, com 10 (dez) planos de manejo por área, totalizando 300 ha, sendo inventariados 100 ha em cada área de manejo. Estas áreas são: Curuçá, Monte Horebe e São Tomé.

Os dados dos inventários florestais foram analisados através do software *Mata nativa* 4.0. O *Mata Nativa* é um software comercial que realiza todos cálculos de inventário florestal e análise fitossociológicas, com aplicação efetiva em todos os biomas brasileiros. Este software

permite realizar diagnósticos qualitativos e quantitativos de formações vegetacionais, análises fitossociológicas completas, elaborar inventários e planos de manejo, monitorar a floresta através de inventários contínuos acompanhando o crescimento e desenvolvimento das espécies e analisando as características de valoração e exploração florestal. A licença para uso do software Mata Nativa 4.0 foi cedida gratuitamente, para uso acadêmico no Laboratório de Manejo Florestal, do Centro de Estudos Superiores de Itacoatiara - CESIT, da Universidade do Estado do Amazonas – UEA.

Os dados de entrada para análise que compõem a base de dados são: Número de identificação da árvore; Código da espécie; Nome da espécie; Diâmetro à altura do peito (DAP). Os parâmetros fitossociológicos calculados foram: Densidade absoluta e relativa (DA e DR), Frequência absoluta e relativa (FA e FR), Dominância absoluta e relativa (DoA e DoR), além dos Índices de Valor de Importância (IVI), Valor de Cobertura (IVC) e Índice de Importância da Espécie (IND). As equações utilizadas para analise estão disponíveis na Tabela 1.

Tabela 1 - Equações utilizadas para os cálculos dos parâmetros fitossociológicos.

Parâmetro Fitossociológico	Equação	Componentes
Densidade Relativa	$DR_i = \left(\frac{DA_i}{\sum_{i=1}^{S} N_i}\right) * 100$	DA_i = densidade absoluta; N_i = número total de indivíduos de uma espécie amostrados por unidade de área (ha);
Densidade Absoluta	$DA_i = N_i.1ha/A$	N_i = número total de indivíduos de uma espécie amostrados por unidade de área (ha); A = área amostral;
Frequência Absoluta	$FA_i = \left(\frac{NP_i}{NP_t}\right) * 100$	NP_i = número de parcelas em que ocorreu a iésima espécie; NP_t = número total de parcelas.
Frequência Relativa	$FR_{i} = \left(\frac{FA_{i}}{\sum_{i=1}^{S} FA_{i}}\right) * 100$ $DoA_{i} = \frac{\sum_{i}^{S} AB_{i}}{A}$	FA_i = Frequência absoluta
Dominância Absoluta	$DoA_i = \frac{\Sigma_i^S AB_i}{A}$	AB_i = área basal; A = área amostral;
Dominância Relativa	$DoR_i = \left(\frac{DoA_i}{\sum_{i=1}^{S} DoA_i}\right) * 100$	$DoA_i = $ dominância absoluta.
Índice de Valor de Cobertura	$IVC_i = DR_i + DoR_i$	DR_i = densidade relativa; DoR_i = dominância relativa
Índice de Valor de Importância	$IVC_i = DR_i + DoR_i + FR_i$	DR_i = densidade relativa; DoR_i = dominância relativa; FR_i = frequência relativa.

Parâmetro Fitossociológico	Equação	Componentes
Índice de Importância das Espécies (IND'S)	$IND = \frac{\left(\frac{\text{NTespécie}}{\text{NTtotal}} * 100\right) + \left(\frac{\text{VTespécie}}{\text{VTtotal}} * 100\right) + \left(\frac{\text{ABsTespécie}}{\text{ABsTtotal}} * 100\right)}{3}$	NT _{espécie} = número total de árvores da espécie NT _{total} = número total de árvores da área inventariada VT _{espécie} = volume total da espécie, em m³ VT _{total} = volume total das árvores, em m³ ABsT _{espécie} = área basal total da espécie, em m² ABsT _{total} = área basal total da área inventariada. (m²)

Foram realizados a interpretação dos Índices de Diversidade de Espécies obtidos a partir do Levantamento Fitossociológico das áreas inventariadas para a comparação do tipo de vegetação que compõe a área. Os índices analisados foram: Índices de diversidade de Shannon-Weaver: considera igual peso entre as espécies raras e abundantes; O Índice de dominância de Simpson mede a probabilidade de 2 (dois) indivíduos, selecionados ao acaso na amostra, pertencer à mesma espécie; O índice de Equabilidade pertence ao intervalo [0,1], onde 1 representa a máxima diversidade, ou seja, todas as espécies são igualmente abundantes. As equações utilizadas estão disponíveis na Tabela 2.

Tabela 2 - Equações utilizadas para os cálculos dos Índices de Diversidade.

Índice	Equação	Componentes		
Índice de diversidade de Shannon (H')	$H = -\Sigma \left(\frac{n_i}{N}\right) \cdot \log\left(\frac{n_i}{N}\right)$	n_i = valor de importância de cada espécie, e N = total de valores de importância.		
Índice de equabilidade de Pielou (J')	J' = H'/S	H' = Índice de Shannon,S = número de espécies amostradas		
Índice de diversidade de Simpson	$D = \sum_{i=1}^{\infty} p_i^2$	D = índice de diversidade Pi = proporção da amostra tota que pertence à espécie i		

4 RESULTADOS E DISCUSSÃO

4.1 ESTRUTURA DA VEGETAÇÃO

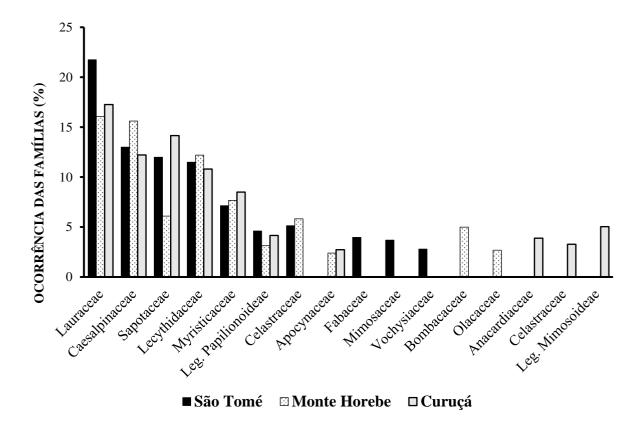
4.1.1 Aspectos Florísticos

As três áreas onde foram realizados o inventário florestal 100%, possuem uma área total de 300 ha, na qual foram registrados 1.130 indivíduos representados por 76 espécies na área Curuçá, 1.108 indivíduos registrado em 75 espécies na área São Tomé e 1.082 indivíduos representados por 85 espécies na área Monte Horebe, sendo que 3 são exclusivas da área Curuçá, 3 exclusivas da área Monte Horebe e 2 da área São Tomé. Comparando-se com outros estudos, verificou-se que: Silva *et al.*, (2015), identificaram no Campo Experimental do Distrito Agropecuário da Suframa (CEDAS) em 15 hectares 264 espécies; Souza (2012) na Estação de Silvicultura Tropical do INPA (ZF-2) identificou 284 espécies em 12 ha. Essas diferenças provavelmente ocorrem devido aos diferentes tamanhos de áreas, níveis, situação antrópica e variações na identificação botânica. (Tabela 3).

Vários estudos têm avaliado a composição e estrutura fitossociológica de florestas na Amazônia, principalmente em ambiente de terra firme, onde estão concentradas as áreas manejadas. Entretanto, em sua maioria, esses estudos utilizam inventários florestais específicos para este fim, com um padrão determinado, parcelas de tamanhos iguais, identificação botânica mais criteriosa, considerando os indivíduos a partir de 10 cm de diâmetro (FREITAS, 2014). Uma vez que o presente estudo considerou apenas espécies a serem exploradas, a comparação deste com outros levantamentos apresentam bastantes diferenças entre resultados.

Tabela 3 - Número de espécies, gêneros e famílias identificados nas três áreas inventariada.

Áreas	Indivíduos	Famílias	Gênero	Espécies
Curuçá	1.130	31	61	76
São Tomé	1.108	28	60	73
Monte Horebe	1.082	31	67	85


As famílias com maior abundância em ordem decrescente, na área Curuçá, foram Lauraceae (17,26%), Sapotaceae (14,15%), Caesalpinaceae, (12,21%), Lecythidaceae (10,8%), Myristicaceae (8,5%) e Mimosaceae (5,04%) que juntas contribuem com 67,96% da abundância total, ficando as outras 25 famílias restantes responsáveis por 32,04%, evidenciando

a baixa abundância de indivíduos nessas famílias.

As famílias mais abundantes na área São Tomé foram Lauraceae (21,75%), Caesalpinaceae, (13,0%), Sapotaceae (12,0%), Lecythidaceae (11,46%), Myristicaceae (7,13%) e Celastraceae (5,14%) abrangendo 70,48% dos indivíduos, ficando as 22 famílias restantes responsáveis por 29,52%.

As famílias mais abundantes na área Monte Horebe foram Lauraceae (16,08%), Caesalpinaceae, (15,62%), Lecythidaceae (12,2%), Myristicaceae (7,67%), Sapotaceae (6,1%), e Celastraceae (5,82%) dos indivíduos, ficando as 25 famílias restantes responsáveis por 36,51%.

Esses resultados confirmam inventários florísticos realizados em floresta de terra firme (Lima Filho *et al*, 2001; Oliveira e Amaral 2004), onde essas famílias destacam-se entre as dez mais diversificadas presentes em floresta de terra firme. A Figura 2 apresenta o resultado das 10 famílias com maiores números de indivíduos por área. Os resultados da composição florística, de todas as áreas, são apresentados no Anexo A.

Figura 2 - Distribuição percentual de indivíduos arbóreos das 10 principais famílias botânicas amostradas, nos três ambientes estudados.

Silva (2006), na Fazenda Experimental da Universidade Federal do Amazonas (FAEXP) Km 38, também obteve resultados semelhantes, onde as famílias mais representativas em número de indivíduos foram: Lecythidaceae, Caesalpinioideae, Sapotaceae, Lecythidaceae, Moraceae, Fabaceae e Lauraceae. Segundo Lima filho *et al.*, (2001); Oliveira e Amaral (2005), as famílias de maior destaque na região Amazônica geralmente são Lauraceae e Lecythidaceae contribuindo com os maiores valores, o que não foi diferente neste estudo pois foi a família com a maior representatividade em todas as três áreas de manejo.

4.1.2 Curva Espécie – Área

A área total coberta pelas três áreas inventariadas foi de 300 ha, e a Curva Espécie-Área apresentou patamares de estabilização ao alcançar uma área de 80 há, onde 90% das espécies amostradas foram identificadas (Figura 3).

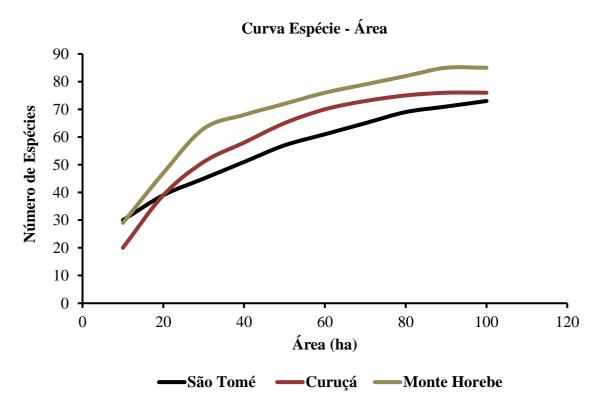


Figura 3 - Curva acumulativa do número de espécies apresentado nas três áreas inventariadas.

A expressão que demonstra a relação entre as áreas inventariadas e o número de espécies acumuladas, representada pela curva espécie/área comprova que o tamanho das áreas inventariadas é suficiente para estimar a riqueza existente no local para as espécies

selecionadas. Considera-se alcançada a área mínima representativa a partir do ponto em que a ampliação da área levantada, em mais 10%, implica em um acréscimo inferior a 10% do número de espécies levantadas (LAMPRECHT 1990).

4.1.3 Parâmetros Dendrométricos

A área total inventariada dos 30 PMFPE, onde se encontra distribuídos em três áreas de 100 ha cada, contendo 10 planos por área, resultando em 10 ha/parcela/área, tendo em média 110,67 indivíduos por parcela em cada área de estudo, na qual foram inventariadas somente espécies de interesse comercial, com DAP ≥ 30 cm.

As três áreas possuem um número total de árvores (NT) de 3.320; abundância (AB) de 33,20 árvores/ha⁻¹; volume total de 12.665,23 m³; volume por hectare de 126,65 m³; área basal total de 1.165,82 m²; e, área basal por hectare de 11,69 m².

A Tabela 4 apresenta os resultados do inventário florestal a 100% para as 03 áreas de PMFPE. Os resultados dendrométricos por espécie, incluindo o Índice de Importância da Espécie (IND), são apresentados no ANEXO B, **Tabelas B – 1, B – 2, B – 3.**

Tabela 4 - Distribuição por área do número total de árvores, abundância, volume total, volume por hectare, área basal total, área basal por hectare.

ÁREA	NT	AB	VT	V	ABsT	ABs
		(árvores. ha ⁻¹)	(m^3)	(m³. ha ⁻¹)	(m²)	(m². ha ⁻¹)
Curuçá	1.130	113,00	4507,31	45,07	404,29	4,04
Monte Horebe	1.082	108,20	4174,89	41,75	394,62	3,95
São Tomé	1.108	110,80	3983,03	39,83	366,92	3,67
TOTAL	3.320	332,00	12665,23	126,65	1165,82	11,66
MÉDIA	1.107	110,67	4221,74	42,22	388,61	3,89

NT = número total de árvores; AB = abundância (árvores. ha-1); VT = volume total; V = volume por hectare; ABsT = área basal total; ABs = área basal por hectare.

4.1.3.1 Índice de Importância das Espécies (IND's)

De acordo com o Índice de Importância da Espécie (IND), as dez espécies de maior relevância ocorrentes nas áreas Curuçá, São Tomé e Monte Horebe, estão representadas nas Figuras 4, 5 e 6.

Índice de Importância das Espécies da área Curuçá

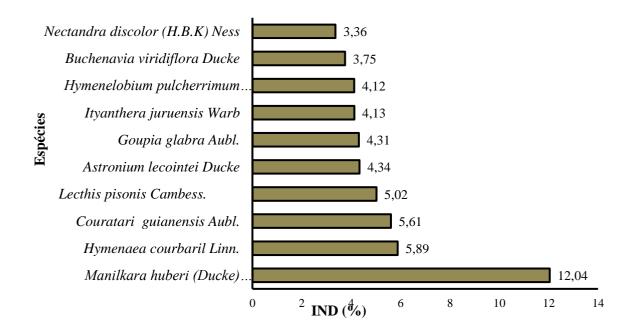
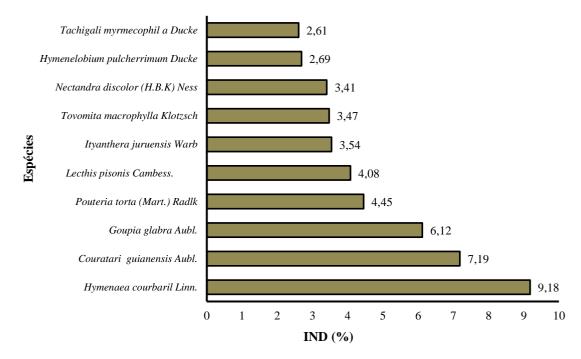
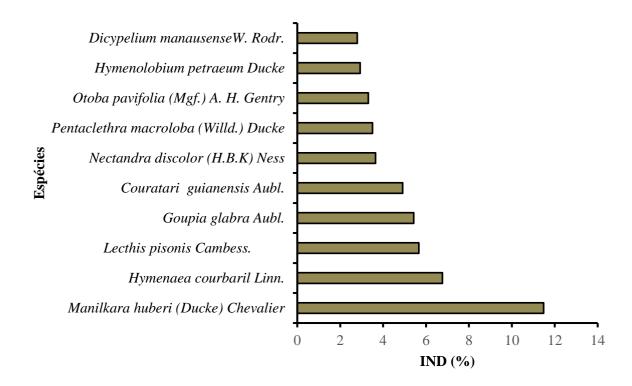




Figura 4 - Principais espécies ocorrentes na área Curuçá de acordo com o índice de importância da espécie (IND).

Índice de Importância das Espécies da área Monte Horebe

Figura 5 - Principais espécies ocorrentes na área Monte Horebe de acordo com o índice de importância da espécie (IND).

Figura 6 - Principais espécies ocorrentes na área São Tomé de acordo com o índice de importância da espécie (IND).

As espécies inventariadas na área Curuçá (Figura 4), foram em ordem decrescentes, as seguintes: Maçaranduba, Jatobá, Tauari, Castanharana, Muiracatiara, Cupiúba, Arurá vermelho, Angelim pedra, Tanibuca e o Louro. Essas espécies representam (50,37%) do IND nessa área, em destaque para a maçaranduba é com grande vantagem, a espécie que mais se destaca com um IND de 12,04%, quase o dobro da segunda espécie mais importante, o Jatobá, que apresentou IND de 5,89%, em seguida o Tauari com 5,61% e as outras demais espécies corresponde com 49,63% do restante do IND da área.

Já na área Monte Horebe (Figura 5), as dez espécies em de maior IND são: Jatobá, Tauari, Cupiúba, Maçaranduba, Castanharana, Arurá vermelho, Sapateiro, Louro, Angelim pedra e Tachi, essas espécies correspondem com 46,75% do IND dessa área, com destaque para o jatobá com 9,18% e Tauari com 7,19%, as demais espécies corresponde com 53,27% do restante do IND da área.

Na área São Tomé (Figura 6) as dez espécies de maior IND presente são: Maçaranduba, Jatobá, Castanharana, Cupiúba, Tauari, Louro, Paracaxi, Arurá, Angelim pedra e Louro preto, dispondo de um total de 50,42% de IND nessa área, onde a espécie maçaranduba

se destaca mais uma vez com 11,48% das outras espécies, em seguida o jatobá com 6,76%, ficando assim as demais espécies com 49,58% do restante do IND da área.

Os resultados encontrados neste estudo mostra as espécies Maçaranduba, Jatobá, Tauari, Castanharana, Angelim pedra, Louro e Cupiúba, estão presentes nas três áreas inventariadas, verifica-se que a maioria são espécies de madeira encontradas nas áreas Curuçá, Monte Horebe e São Tomé são de uso comercial reconhecido para as mais diversas finalidades (moveis, pisos, vigamentos, painéis, etc.).

Segundo Araújo (2006) do ponto de vista comercial, algumas das 10 espécies com maior IND podem ser consideradas emergentes, visto que são relativamente pouco conhecidas no mercado de madeira, entre estas estão o Tauari e a Tanibuca.

Araújo (2006), analisando uma área do Projeto de Colonização Pedro Peixoto, extremidade leste do estado do Acre, encontrou valores parecidos para o Jatobá (8,45%), Tauari (5,545%) e Angelim pedra (3,98%), para o mesmo autor, o acentuado desequilíbrio das espécies quanto aos IND's demonstra que nas florestas inventariadas, e por extensão a toda floresta amazônica, há expressiva concentração dos elementos dendrométricos, quer seja, poucas espécies reúnem a maior parte das árvores adultas e, consequentemente, a maior parte do volume de madeira.

Podemos observar que o inventario florestal nas três áreas, mostrou uma parte significativa do estoque de madeira existentes nas áreas, onde é constituída por madeira de valor comercial, dando destaque a viabilidade econômica do manejo florestal, o que é de fundamental importância.

4.1.4 Estrutura Diamétrica

Para a estrutura diamétrica, considerou-se indivíduos com DAP ≥ 30 cm. Os indivíduos foram distribuídos em 8 classes de diâmetro conforme as áreas de estudo.

Nas Figuras 7,8 e 9, observam-se os gráficos da distribuição dos diâmetros para as três áreas de estudo. Percebe-se uma unanimidade no comportamento dessa distribuição, sendo que as distribuições de todas as três áreas seguiram o padrão de distribuição exponencial negativa, na forma de "J reverso". Para Amaral *et al.* (2000), o comportamento da distribuição diamétrica tem sido observado em vários trabalhos desenvolvidos em floresta de terra firme na Região Amazônica. Segundo Rabelo *et al.* (2002), essa tendência de "J Reverso", tem se observado em florestas secundarias ou em floresta no início da sucessão.

Distribuição Diâmetrica da área Curuçá

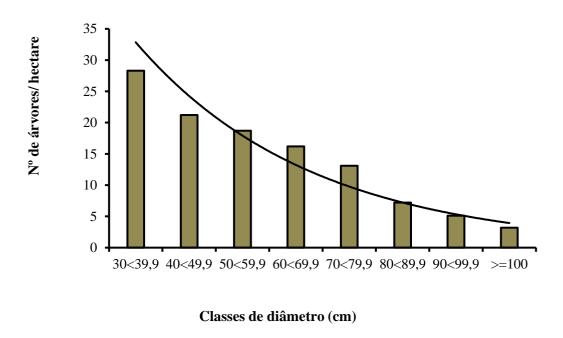


Figura 7 - Estruturas diamétricas das espécies inventariadas na área Curuça.

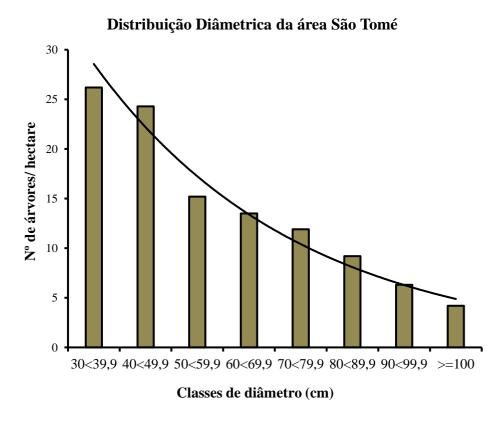


Figura 8 - Estruturas diamétricas das espécies inventariadas na área São Tomé

Distribuição Diâmetrica da área Monte Horebe 30 25 Nº de árvores/ hectare 20 15 10 5 0 30<39,9 40<49,9 50<59,9 60<69,9 70<79,9 80<89,9 90<99,9 >=100 Classes de diâmetro (cm)

Figura 9 - Estruturas diamétricas das espécies inventariadas na área Monte Horebe.

Nota-se que grande parte dos indivíduos amostrados se encontram distribuídos no primeiro centro de classe diamétrica (30<39,9), em todas as três áreas de estudos, caracterizando assim uma floresta de pequeno porte. Segundo Oliveira *et al.* (2008), propõem que o comportamento decrescente da curva indica pouca ou nenhuma pressão antrópica sobre o ambiente florestal, o que é ratificado tanto pelo pequeno número de espécies pioneiras, como pela alta diversidade florística no hectare inventariado.

4.2 ASPECTOS FITOSSOCIOLÓGICOS

4.2.1 Estrutura Horizontal

As estruturas da floresta das áreas de PMFPE, com base na variável DAP \geq 30 cm, foram obtidos os valores de Densidade, Frequência e Dominância relativa, Índice de Valor de Cobertura (IVC) e Índice de Valor de Importância (IVI). Os resultados da análise sobre a estrutura horizontal da floresta das três áreas, pode ser observado detalhadamente no **ANEXO C**, **Tabelas C** – **1**, **C** – **2**, **C** – **3**. Os dados foram organizados de acordo com o IVI das espécies, as quais foram classificadas do maior para o menor.

a) Área Curuçá

Na área Curuçá (Tabela 5), observou-se a densidade total de 11,30 ind./ha⁻¹ e a área basal total de 4,05 m². ha⁻¹. As espécies mais predominantes quanto a densidade absoluta são: *Manilkara huberi (Ducke) Chevalier* (1,08 Ind./ha⁻¹), *Lecthis pisonis* Cambess (0,67 Ind./ha⁻¹), *Hymenaea courbaril* Linn (0,61 Ind./ha⁻¹), *Ityanthera juruensis* Warb (0,52 Ind./ha⁻¹), *Nectandra discolor* (H.B.K) Ness (0,45 Ind./ha). As espécies que tiveram a sua área basal predominante foram: *Manilkara huberi* (Ducke) Chevalier (0,53 m²/ha), *Couratari guianensis* Aubl (0,26 m²/ha), *Hymenaea courbaril* Linn (0,23 m²/ha), *Goupia glabra* Aubl. (0,20 m²/ha), *Lecthis pisonis* Cambess. (0,17 m²/ha).

O grau de participação das diferentes espécies na área Curuçá que correspondente a densidade relativa em porcentagem foram: *Manilkara huberi* (Ducke) Chevalier (9,56%), *Lecthis pisonis* Cambess (5,93%), *Hymenaea courbaril* Linn (5,40%), *Ityanthera juruensis* Warb (4,60%), *Nectandra discolor* (H.B.K) Ness (3,98%), *Astronium lecointei* Ducke (3,81%), *Tachigali myrmecophila* Ducke (3,72%), *Couratari guianensis* Aubl.(3,45%), *Hymenelobium pulcherrimum* Ducke (3,36%), *Goupia glabra* Aubl.(3,27%) no qual representa 46,55% da densidade relativa da área em estudo. No entanto, 52,92% da densidade total ficaram distribuídos em 66 espécies restante tento uma densidade relativa menor a 3%.

Tabela 5 - Estrutura horizontal das 10 principais espécies da área Curuçá.

ESPÉCIE	Ind.	AB (m²)	DA (Ind./ha ⁻¹)	DR (%)	DoA (m²/ha-1)	DoR (%)	FA	FR (%)
Manilkara huberi (Ducke) Chevalier	108	53,02	1,08	9,56	0,53	13,11	100,00	4,37
Lecthis pisonis Cambess.	67	17,39	0,67	5,93	0,17	4,30	80,00	3,49
Hymenaea courbaril Linn.	61	23,10	0,61	5,40	0,23	5,71	90,00	3,93
Ityanthera juruensis Warb	52	15,79	0,52	4,60	0,16	3,90	50,00	2,18
Nectandra discolor (H.B.K) Ness	45	12,79	0,45	3,98	0,13	3,16	40,00	1,75
Astronium lecointei Ducke	43	17,34	0,43	3,81	0,17	4,29	100,00	4,37
Tachigali myrmecophila Ducke	42	9,37	0,42	3,72	0,09	2,32	40,00	1,75
Couratari guianensis Aubl.	39	26,17	0,39	3,45	0,26	6,47	90,00	3,93
Hymenelobium pulcherrimum Ducke	38	17,36	0,38	3,36	0,17	4,29	100,00	4,37
Goupia glabra Aubl.	37	20,17	0,37	3,27	0,20	4,99	90,00	3,90
Subtotal	532	212,47	5,32	47,08	2,13	52,54	780,00	34,04
Outras espécies	598	191,80	5,98	52,92	1,92	47,46	1510,0	65,96
Total	1130	404,27	11,30	100	4,05	100	2290,0	100,0

Ind. = Numero de Indivíduos; AB = área basal (m²); DA= densidade absoluta (ind. ha); DR (%) = densidade relativa; DoA= dominância absoluta (m².h); DoR (%) = dominância relativa; FA= frequência absoluta; FR (%) = frequência relativa.

A dominância relativa da área Curuçá constante ainda na (Tabela 5), onde foram observadas as 10 espécies maiores que contribuíram com 52,54 % das árvores de maior ocupação da área de estudo. Onde as maiores porcentagens corresponderam as espécies, *Manilkara huberi* (Ducke) Chevalier (13,11%), *Couratari guianensis* Aubl. (6,47%), *Hymenaea courbaril* Linn (5,71%), *Goupia glabra* Aubl. (4,99%), *Lecthis pisonis* Cambess (4,30%), *Astronium lecointei* Ducke (4,29%), *Hymenelobium pulcherrimum* Ducke (4,29%), *Ityanthera juruensis* Warb (3,90%), *Nectandra discolor* (H.B.K) Ness (3,16%), *Tachigali myrmecophi*la Ducke ,32%).

As espécies com maior frequência absoluta estudada na área, apenas três estão presentes em todas as parcelas inventariadas (Tabela 5). Observa-se que das 76 espécies encontradas na área Curuçá, 20 espécies ocorrem em pelos menos 50% da área.

- Índice de Valor de Importância (IVI) e Índice de Valor de Cobertura (IVC)

As Figuras 10 e 11, mostram a distribuição do valor de importância e de cobertura por espécies da área Curuçá.

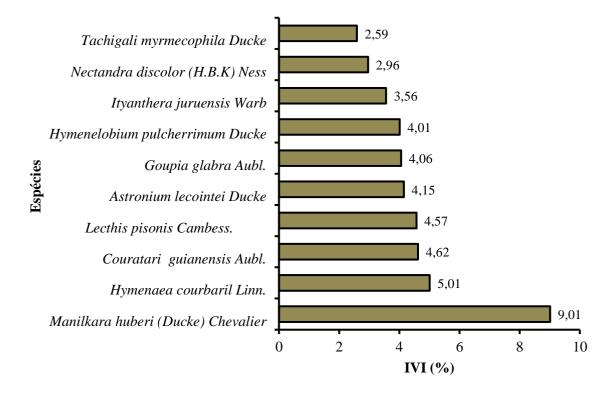


Figura 10 - Índice de Valor de Importância (IVI) para as dez espécies que mais se destacaram na área Curuçá.

A espécie que se destacam das demais com relação ao IVI (Figura 10), é a *Manilkara huberi* (Ducke) Chevalier (9,01%). As demais seguem um decréscimo gradativo a partir do valor apresentado pela espécie *Hymenaea courbaril* Linn (5,01%), *Couratari guianensis* Aubl. (4,62%), *Lecthis pisonis* Cambess (4,57%), *Astronium lecointei* Ducke (4,15%), *Goupia glabra* Aubl. (4,06%), *Hymenelobium pulcherrimum* Ducke (4,01%), *Ityanthera juruensis* Warb (3,56%), *Nectandra discolor* (H.B.K) Ness (2,96%), *Tachigali myrmecophila* Ducke (2,59%), totalizando 44,54% do IVI das dez mais representativa na área, as 66 espécies restante contribuíram com um IVI de 55,46%.

Analisando-se as espécies amostradas quanto ao valor de cobertura (Figura 11), a espécie *Manilkara huberi* (Ducke) Chevalier (11,34%) apresenta um destaque maior no valor de cobertura em comparação as outras espécies. As demais seguem um decréscimo gradativo a partir do valor apresentado pela espécie *Hymenaea courbaril* Linn (5,56%), *Couratari guianensis* Aubl. (5,12%), *Lecthis pisonis* Cambess (4,96%), *Astronium lecointei* Ducke (4,25%), *Goupia glabra* Aubl. (4,13%), *Hymenelobium pulcherrimum* Ducke (4,05%), *Ityanthera juruensis* Warb (3,83%), *Nectandra discolor* (H.B.K) Ness (3,57%), *Tachigali myrmecophila* Ducke (3,02%), as demais 66 espécies restante apresentam um IVC de 50,17% do total.

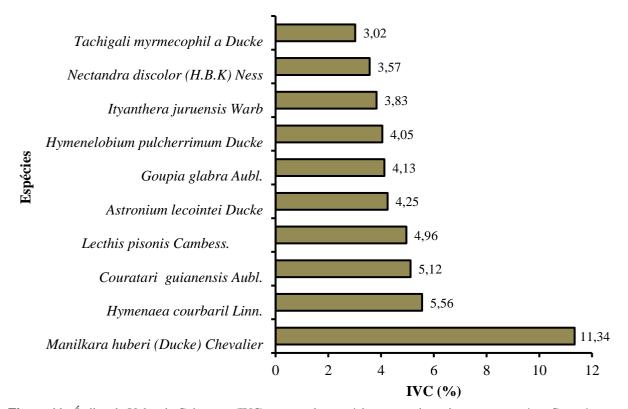


Figura 11 - Índice de Valor de Cobertura (IVC) para as dez espécies que mais se destacaram na área Curuçá.

b) Área Monte Horebe

Na área Monte Horebe (Tabela 6), observou-se a densidade total de 10,82 ind./ha⁻¹ e a área basal total de 3,95 m². ha⁻¹. As espécies mais predominantes quanto a densidade absoluta são: *Hymenaea courbaril* Linn (0,79 Ind./ha⁻¹), *Goupia glabra* Aubl. (0,63 Ind./ha⁻¹), *Lecthis pisonis* Cambess (0,58 Ind./ha⁻¹), *Nectandra discolor* (H.B.K) Ness (0,52 Ind./ha⁻¹), *Manilkara huberi* (*Ducke*) Chevalier (0,46 Ind./ha⁻¹). As espécies que tiveram a sua área basal predominante foram: *Hymenaea courbaril* Linn (0,36 m²/ha⁻¹), *Couratari guianensis* Aubl (0,33 m²/ha⁻¹), *Goupia glabra* Aubl. (0,27 m²/ha⁻¹), *Manilkara huberi* (Ducke) Chevalier (0,18 m²/ha⁻¹), *Tovomita macrophylla* Klotzsch (0,16 m²/ha⁻¹).

Tabela 6 - Estrutura horizontal das 10 principais espécies da área Monte Horebe.

ESPÉCIE	Ind.	AB (m²)	DA (Ind./ha ⁻¹)	DR (%)	DoA (m²/ha⁻¹)	DoR (%)	FA	FR (%)
Hymenaea courbaril Linn.	79	35,78	0,79	7,30	0,36	9,07	90,00	4,35
Goupia glabra Aubl.	63	27,08	0,63	5,82	0,27	6,86	70,00	3,38
Lecthis pisonis Cambess.	58	14,02	0,58	5,36	0,14	3,55	80,00	3,86
Nectandra discolor (H.B.K) Ness	52	11,92	0,52	4,81	0,12	3,02	40,00	1,93
Manilkara huberi (Ducke) Chevalier	46	17,52	0,46	4,25	0,18	4,44	60,00	2,90
Ityanthera juruensis Warb	43	13,02	0,43	3,97	0,13	3,30	70,00	3,38
Couratari guianensis Aubl.	42	33,00	0,42	3,88	0,33	8,36	70,00	3,38
Mezilaurus itauba (meissn.) Taubert ex	31	5,07	0,31	2,87	0,05	1,28	60,00	2,90
Dicypelium manausense W. Rodr.	31	6,53	0,31	2,87	0,07	1,65	50,00	2,42
Tovomita macrophylla Klotzsch	29	16,06	0,29	2,68	0,16	4,07	30,00	1,45
Subtotal	474	180,00	4,74	43,91	1,80	45,60	620,00	29,95
Outras espécies	608	214,62	6,08	56,09	2,15	54,40	1450,00	70,05
Total	1082	394,62	10,82	100,0	3,95	100,0	2070,0	100,0

Ind. = Numero de Indivíduos; AB = área basal (m²); DA= densidade absoluta (ind. ha); DR (%) = densidade relativa; DoA= dominância absoluta (m².h); DoR (%) = dominância relativa; FA= frequência absoluta; FR (%) = frequência relativa.

As espécies com maior porcentagem de densidade relativa corresponderam a: *Hymenaea courbaril* Linn (7,30%), *Goupia glabra* Aubl. (5,82%), *Lecthis pisonis* Cambess (5,36%), *Nectandra discolor* (H.B.K) Ness (4,81%), *Manilkara huberi* (Ducke) Chevalier (4,25%), *Ityanthera juruensis* Warb (3,97%), *Couratari guianensis* Aubl (3,88%), *Mezilaurus itauba* (meissn.) Taubert ex (2,87%), *Dicypelium manausense* W. Rodr. (2,87%), *Tovomita macrophylla* Klotzsch (2,68%), no qual representa 43,91% da densidade relativa da área em estudo. No entanto, 56,09 % da densidade total ficaram distribuídos em 75 espécies restante tento uma densidade relativa menor a 2%.

Ainda na tabela 6, apresenta-se a dominância relativa por espécie, onde observa-se que

as 10 maiores espécies contribuíram com 45,60% da ocupação das espécies na área de estudo. As maiores porcentagens corresponderam às espécies: *Hymenaea courbaril* Linn (9,07%), *Couratari guianensis* Aubl (8,36%), *Goupia glabra* Aubl. (6,86%), *Manilkara huberi* (Ducke) Chevalier (4,44%), *Tovomita macrophylla* Klotzsch (4,07%), *Lecthis pisonis* Cambess (3,55%), *Ityanthera juruensis* Warb (3,30%), *Nectandra discolor* (H.B.K) Ness (3,02%), *Dicypelium manausense* W. Rodr. (1,65%), *Mezilaurus itauba* (meissn.) Taubert ex (1,26%).

Com relação à Frequência Relativa das espécies a variação se apresentou entre 4,35% com 79 indivíduos; 3,38% com 63 indivíduos; 2,90% com 46 indivíduos (Tabela 6). Nesta área não se teve a frequência de 100% das espécies em todas as parcelas.

- Índice de Valor de Importância (IVI) e Índice de Valor de Cobertura (IVC)

Analisando-se as espécies amostradas quanto à sua importância ecológica, das dez espécies com maior IVI (Figura 12), destacaram-se: *Hymenaea courbaril* Linn (6,90%), *Goupia glabra* Aubl. (5,36%), *Couratari guianensis* Aubl (5,21%), *Lecthis pisonis* Cambess (4,26%), *Manilkara huberi* (Ducke) Chevalier (3,86%), *Ityanthera juruensis* Warb (3,55%), *Nectandra discolor* (H.B.K) Ness (3,25%), *Tovomita macrophylla* Klotzsch (2,75%), *Mezilaurus itauba* (meissn.) Taubert ex (2,35%), *Dicypelium manausense* W. Rodr. (2,31%), totalizando 39,78% do IVI das dez mais representativa na área, as 75 espécies restante contribuíram com um IVI de 60,24%.

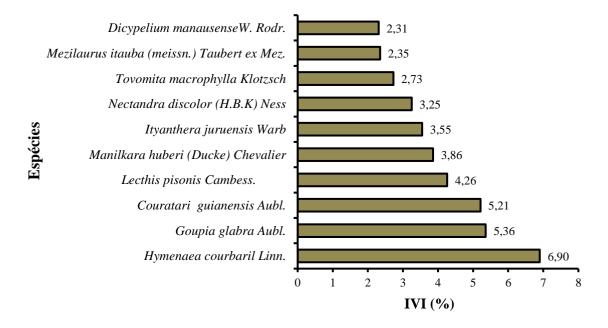
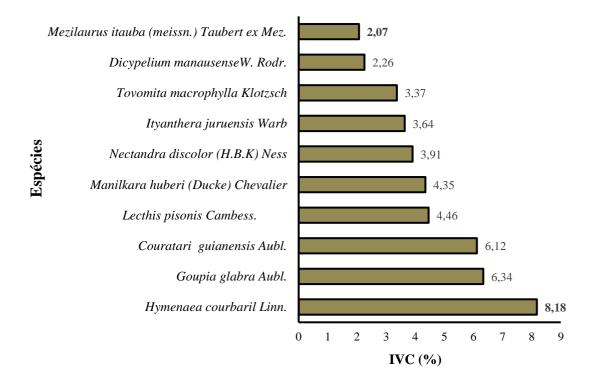



Figura 12 - Índice de Valor de Importância (IVI) para as dez espécies que mais se destacaram na área Monte Horebe.

O índice de valor de cobertura (Figura 13) mais acentuado foi apresentado pela espécie Hymenaea courbaril Linn (8,18%), seguindo pelas espécies Goupia glabra Aubl. (6,34%), Couratari guianensis Aubl (6,12%), Lecthis pisonis Cambess (4,46%), Manilkara huberi (Ducke) Chevalier (4,35%), Nectandra discolor (H.B.K) Ness (3,91%), Ityanthera juruensis Warb (3,64%), Tovomita macrophylla Klotzsch (3,37%), Dicypelium manausense W. Rodr. (2,26%), Mezilaurus itauba (meissn.) Taubert ex (2,07%). As demais 75 espécies apresentam 55,30% total do IVC.

Figura 13 - Índice de Valor de Cobertura (IVC) para as dez espécies que mais se destacaram na área Monte Horebe.

c) Área São Tomé

Na área São Tomé (Tabela 7), observou-se a densidade total de 11,82 ind./ha⁻¹ e a área basal total de 3,67 m². ha⁻¹. As espécies mais predominantes quanto a densidade absoluta são: *Manilkara huberi* (Ducke) Chevalier (1,08 Ind./ha⁻¹), *Lecthis pisonis* Cambess. (0,73 Ind./ha *Goupia glabra* Aubl. (0,57 Ind./ha⁻¹), *Hymenaea* courbaril Linn. (0,56 Ind./ha⁻¹), *Nectandra discolor* (H.B.K) Ness (0,54 Ind./ha⁻¹). As espécies que tiveram a sua área basal predominante foram: *Manilkara huberi* (*Ducke*) Chevalier (0,44 m²/ha⁻¹), *Hymenaea courbaril* Linn (0,26 m²/ha⁻¹), *Lecthis pisonis* Cambess. (0,20 m²/ha⁻¹), *Goupia glabra* Aubl. (0,19 m²/ha⁻¹), Pentaclethra macroloba (Willd.) Ducke (0,14 m²/ha⁻¹).

Tabela 7 - Estrutura horizontal das 10 principais espécies da área São Tomé.

ESPÉCIE	Ind.	AB (m²)	DA (Ind./ha ⁻¹)	DR (%)	DoA (m²/ha-1)	DoR (%)	FA	FR (%)
Manilkara huberi (Ducke) Chevalier	108	43,80	1,08	9,75	0,44	11,94	100	4,13
Lecthis pisonis Cambess.	73	19,57	0,73	6,59	0,20	5,33	90	3,72
Goupia glabra Aubl.	57	19,08	0,57	5,14	0,19	5,20	80	3,31
Hymenaea courbaril Linn.	56	25,63	0,56	5,05	0,26	6,99	100	4,13
Nectandra discolor (H.B.K) Ness	54	12,45	0,54	4,87	0,13	3,39	30	1,24
Dicypelium manausense W. Rodr.	52	7,66	0,52	4,69	0,08	2,09	80	3,31
Mezilaurus itauba (meissn.) Taubert ex	44	6,61	0,44	3,97	0,07	1,80	70	2,89
Otoba pavifolia (Mgf.) A. H. Gentry	37	12,69	0,37	3,34	0,13	3,46	50	2,07
Ityanthera juruensis Warb	34	8,95	0,34	3,07	0,09	2,44	60	2,48
Pentaclethra macroloba (Willd.)	32	13,94	0,32	2,89	0,14	3,80	60	2,48
Subtotal	578	191,12	5,78	52,20	1,91	52,09	780,00	32,24
Outras espécies	530	175,80	5,30	47,80	1,76	47,91	1640,0	67,76
Total	1108	366,92	11,08	100,0	3,67	100,0	2420,0	100,0

Ind. = Numero de Indivíduos; AB = área basal (m^2); DA= densidade absoluta (ind. ha); DR (%) = densidade relativa; DoA= dominância absoluta (m^2 .h); DoR (%) = dominância relativa; FA= frequência absoluta; FR (%) = frequência relativa.

As espécies com maior densidade relativa na área São Tomé, seguindo uma ordem decrescentes são: *Manilkara huberi (Ducke)* Chevalier (9,75%), *Lecthis pisonis Cambess*. (6,59%), *Goupia glabra* Aubl. (5,14%), *Hymenaea courbaril* Linn. (5,05%), *Nectandra discolor* (H.B.K) Ness (4,87%), *Dicypelium manausense* W. Rodr. (4,69%), *Mezilaurus itauba* (meissn.) Taubert ex (3,97%), *Otoba pavifolia* (Mgf) A. H. Gentry (3,34%), *Ityanthera juruensis* Warb (3,07%), *Pentaclethra macroloba* (Willd.) Ducke (2,89%) que representaram 52,16% da densidade relativa total da área. O restante da densidade total foi distribuído em 62 espécies com densidade menor 1,90%, totalizando 47,79 % das espécies amostradas.

Conforme a Tabela 7, apresenta-se os valores de dominância relativa por espécies, onde são observadas as 10 maiores espécies, onde elas contribuíram com 52,09% da dominância relativa total da área de estudo. As maiores porcentagens corresponderam às espécies *Manilkara huberi* (Ducke) Chevalier (11,94%), *Hymenaea courbaril* Linn. (6,99%), *Lecthis pisonis* Cambess. (5,33%), *Goupia glabra* Aubl. (5,20%), *Pentaclethra macroloba* (Willd.) Ducke (3,80%), *Otoba pavifolia* (Mgf.) A. H. Gentry (3,46%), *Nectandra discolor* (H.B.K) Ness (3,39%), *Ityanthera juruensis* Warb (2,44%), *Dicypelium manausense* W. Rodr. (2,09%), *Mezilaurus itauba* (meissn.) Taubert ex (1,80%). As outras 62 espécies contribuíram com 47,91% da dominância relativa.

Com relação a frequência das espécies apenas duas estão presentes 100% em toda área, as demais estão distribuindo em 90%, 80%, 70% e 30% na área.

- Índice de Valor de Importância (IVI) e Índice de Valor de Cobertura (IVC)

Na Figura 14, encontra-se a distribuição do Índice de Valor de Importância (IVI) das 10 espécies mais representativa dentro da área, em uma ordem decrescente foram: *Manilkara huberi (Ducke)* Chevalier (8,61%), *Hymenaea courbaril* Linn. (5,39%), *Lecthis pisonis Cambess*. (5,21%), *Goupia glabra* Aubl. (4,55%), Couratari guianensis Aubl. (3,64%), *Dicypelium manausenseW. Rodr.* (3,36%), *Nectandra discolor* (H.B.K) Ness (3,17%), *Pentaclethra macroloba (Willd.) Ducke* (3,06%), *Otoba pavifolia (Mgf.) A. H.* Gentry (2,95%), *Mezilaurus itauba (meissn.) Taubert ex* (2,89%) totalizando 42,83 % do IVI total. Os restantes 57,17%, estão distribuídos entre as 62 espécies arbóreas restantes.

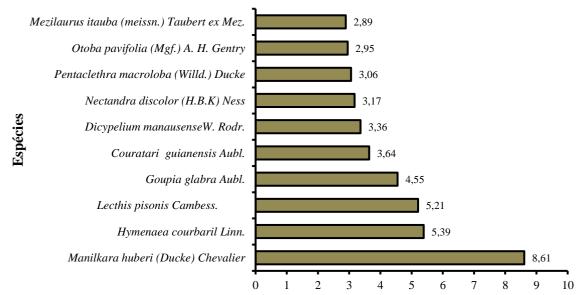


Figura 14 - Índice de Valor de Importância (IVI) para as dez espécies que mais se destacaram na área São Tomé.

Na Figura 15, observa-se que a maior parte do IVC total (49,37%) se encontram distribuído em 10 espécies com 10,84% para a espécie *Manilkara huberi* (Ducke) Chevalier, em seguida em ordem decrescente as demais espécies: *Goupia glabra* Aubl. (6,02%), *Hymenaea courbaril* Linn. (5,96%), *Lecthis pisonis Cambess*. (5,17%), *Ityanthera juruensis* Warb (4,23%), Couratari guianensis Aubl. (4,13%), *Pentaclethra macroloba* (*Willd.*) *Ducke* (3,40%), *Dicypelium manausenseW. Rodr.* (3,39%), *Mezilaurus itauba* (meissn.) Taubert ex (3,34%) *Nectandra discolor* (H.B.K) Ness (2,89%), no entanto, as 62 espécies restantes conformaram 50,63% do IVC total com um valor abaixo de 2,48%.

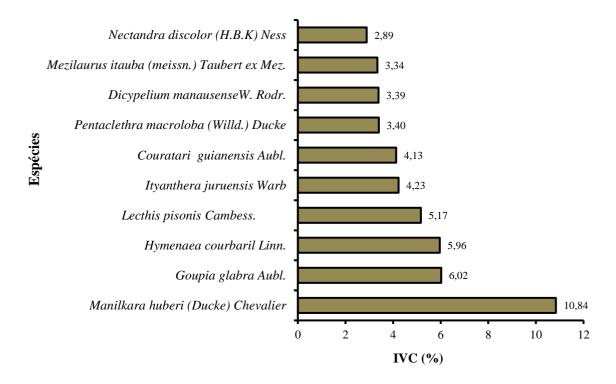


Figura 15 - Índice de Valor de Cobertura (IVC) para as dez espécies que mais se destacam na área São Tomé.

Quando comparado os resultados dos descritores fitossociológicos das três áreas, podemos perceber que as espécies, *Manilkara huberi (Ducke)* Chevalier da Família Sapotaceae, *Hymenaea courbaril* Linn. da família Leg. Caesalpinioideae, *Goupia glabra* Aubl. da família Celastraceae, *Lecthis pisonis Cambess*. da família Lecythidaceae, *Nectandra discolor* (H.B.K) Ness da família Lauraceae, estão presentes com um total 1.076 indivíduos distribuídos nas três áreas, os demais 2. 244 indivíduos, se encontram distribuídos nas demais famílias.

Quando avaliado os índices por espécies, Amaral e Oliveira (2004) e Silva *et al.* (2008), observaram sete das dez espécies aqui apresentadas com maiores IVIs, sendo cinco em comum para três áreas de estudos. Isto pode ter ocorrido devido ao fato destes autores terem realizado a pesquisa em uma área destinada a manejo florestal e terem considerados indivíduos acima de 30 cm para coleta de dados. Além de ser uma região geograficamente próxima, dentro da mesma bacia do rio Amazonas.

Os resultados apresentados neste trabalho se fazem muito parecidos com os apresentados para a região do baixo Amazonas. Quando Freitas (2014), estudou a fitossologia de Espécies Arbóreas Licenciadas em Plano de Manejo Florestal Sustentável em Pequena Escala assistindo pelo IDAM, onde a ocorrência das mesmas espécies presentes nas áreas de estudos, estão presentes no trabalho do autor citado.

Silva et al. (2008) estudando a composição florística e fitossociologia de espécies arbóreas do Parque Fenológico da Embrapa Amazônia Ocidental, verificaram que as espécies *Manilkara huberi (Ducke)* Chevalier, *Hymenaea courbaril* Linn e *Goupia glabra* estavam entre as espécies com os 10 maiores valores de IVI. Tais espécies, entre outras, são frequentemente citadas em diversos trabalhos desenvolvidos em ecossistemas de terra firme da Amazônia (LIMA FILHO et al., 2001).

4.2.2 Diversidade de espécies

Foram calculados os Índice de Shannon-Weaver (H'), Índice de Equabilidade de Pielou (J) e o Índice de dominância de Simpson – C, para quantificar a diversidade de espécies nas áreas em estudo (Tabela 8).

Tabela 8 - Índices de Diversidades das Áreas Curuçá, Monte Horebe e São Tomé.

ÍNDICES		ÁREAS						
INDICES	C	MH	ST					
С	0,97	0,97	0,97					
Η'	3,90	3,89	3,73					
J	0,85	0,87	0,86					

C -Índice de Dominância de Simpson; H' – índice de diversidade Shannon-Weaver; J – Equabilidade de Pielou.

O índice de Shannon-Wiener, também chamado de Índice de Shannon-Weaver, para florestas tropicais, normalmente varia de 3,83 a 5,85, valores considerados altos para qualquer tipo de vegetação (KNIGHT, 1975).

O índice de diversidade Shannon entre as três áreas, não tiveram variação, apresentando um valor médio de H' 3,84, qual representa um relativo valor elevado de diversidade florística.

Comparado com o trabalho de Tello *et al.* (2008), que na realização da análise composição florística em três comunidades de terra firme, no município de Presidente Figueiredo, considerou como alta diversidade os resultados de H' no valor de 3,67 de 3,31 e de 3,52 de três florestas de terra firme, na região de Presidente Figueiredo, no Amazonas.

O índice de equabilidade de Pielou (J) das três áreas não apresentaram diferença, tendo em média 0,86, o que significa que não há a dominância de uma ou de um pequeno grupo de espécies nas áreas, indicando alta heterogeneidade florística.

Segundo Oliveira e Amaral (2004), estes resultados indicam alta uniformidade nas proporções indivíduos/espécies das áreas analisadas. A alta heterogeneidade florística refletida a partir desses valores indica claramente que não ocorre dominância de uma ou poucas espécies nas florestas nativas da Amazônia (RIBEIRO *et al.*,2013).

O índice de equabilidade encontrado foi próximo ao encontrado por Almeida *et al.* (2012), que apresentou valor de 0,85, o qual indica alta heterogeneidade das espécies destas áreas.

O índice de dominância de Simpson (C) calculado neste trabalho mostrou um resultado diferente quando comparado aos outros índices. O valor de 0,97 encontrado nas três áreas de estudo, mostra uma baixa dominância de espécies nestas áreas, por ser um valor muito próximo de 1.

CONCLUSÕES

As três áreas são classificadas com a mesma tipologia florestal, e apresentam resultados semelhantes quanto a diversidade de espécies, porém existe uma variação das famílias botânicas com maior importância de acordo com a análise estrutural.

Com base na distribuição diamétrica dos indivíduos foi possível constatar que a floresta das três áreas possui grande estoque madeireiro, contendo a maior concentração de indivíduos nas 3 primeiras classes diamétrica.

As espécies mais importantes quanto ao IVI, IVC e IND, presente em todas as três áreas desse estudo demostram o potencial comercial das espécies encontradas.

Os índices de diversidade e uniformidade das espécies, representados pelo índice de Shannon, Simpson e Equatabilidade de Pielou, mostrou uma alta diversidade para as áreas em estudo, indicando ser uma vegetação bastante heterogênea, esses resultados se explicam pela complexidade da estrutura das florestas tropicais.

Para uma melhor avaliação do potencial madeireiro para fins de manejo florestal em pequena escala recomenda-se que os inventários florestais a 100%, realizados pelo IDAM, precisam inserir na coleta de dados todas as árvores com DAP ≥ 10 cm.

REFERÊNCIAS

ALMEIDA, Larissa Santos de; GAMA, João Ricardo Vasconcellos; OLIVEIRA, Francisco de Assis; CARVALHO, João Olegário Pereira de; GONÇALVES, Danielly Caroline Miléo; ARAÚJO, Giovânia Carvalho. Fitossociologia e uso múltiplo de espécies arbóreas em floresta manejada, Comunidade Santo Antônio, município de Santarém, Estado do Pará. **Acta Amazonica**, Manaus, v. 42, n. 2, p. 185-194, 2012.

AMARAL, Iêda Leão; MATOS, F. Dionízia A.; LIMA, José. Composição florística e parâmetros estruturais de um hectare de floresta densa de terra firme no rio Uatumã, Amazônia, Brasil. **Acta Amazonica**, v.30, n.3, p. 377-392. 2000.

AMARAL, Paulo; AMARAL, Neto Manuel; NAVA, Francy Rosy; Fernandez, Katiuiscia. **Manejo Florestal Comunitário na Amazônia Brasileira.** Avanços e Perspectivas para a Conservação Florestal. Brasília: Serviço Florestal Brasileiro, 2007.

AMARAL, Paulo; NETO, Manuel Amaral. **Manejo florestal comunitário.** processos e aprendizagem na Amazônia brasileira e na América Latina. Belém: Alves, 2005.

AMAZONAS, Governo do Estado. **Manejo florestal sustentável em pequena escala no Amazonas**: orientações técnicas e administrativas. Manaus: 2008.

ANDRADE, Raimundo Saturnino de. **Planos de manejo florestal em pequena escala nas unidades de conservação do Amazonas**: situação atual e perspectivas. Manaus: INPA, 2014. Dissertação (Mestrado em Gestão de Áreas Protegidas na Amazônia), Instituto Nacional de Pesquisas da Amazônia, Manaus, 2014.

ARAÚJO, Henrique José Borges de. **Agrupamento das espécies madeireiras ocorrentes em pequenas áreas sob manejo florestal do Projeto de Colonização Pedro Peixoto (AC) por similaridade das propriedades físicas e mecânicas** / Dissertação (mestrado) - Escola Superior de Agricultura Luiz de Queiroz - Piracicaba, 2002.

ARAUJO, Henrique José Borges de. Inventário florestal a 100% em pequenas áreas sob manejo florestal madeireiro. **Acta amazônica.** Manaus, vol. 36, n (4), p. 447-464. 2006.

BARROS, Paulo Luiz Contente de. Estudo fitossociológico de uma floresta tropical úmida no planalto de Curuá-Una, Amazônia brasileira. Curitiba: UFP. Tese (Doutorado em Ciências Florestais) - Universidade Federal do Paraná, Curitiba, 1986.

BRAZ, Evaldo Munôz. **Subsídios para o planejamento do manejo de floresta tropicais da Amazônia.** Santa Maria: UFSM. Tese (doutorado), Universidade Federal de Santa Maria, Centro de Ciências Rurais, Programa de Pós-Graduação em Engenharia Florestal, 2010.

CARVALHEIRO, Katia; SABOGAL, Cézar; AMARAL, Paulo. **Análise da Legislação para o Manejo Florestal por Produtores de Pequena Escala na Amazônia Brasileira**. Belém: Forlive, 2008.

CONAMA. Conselho Nacional de Meio Ambiente. Resolução nº 406 de 2 de fev. de 2009. Estabelece parâmetros técnicos a serem adotados na elaboração, apresentação, avaliação

técnica e execução de Plano de Manejo Florestal Sustentável-PMFS com fins madeireiros, para florestas nativas e suas formas de sucessão no bioma Amazônia. In: **Diário Oficial da União**, Brasília, n. 26, p. 100, 02 fev. 2009.

COSTA, Dulce Helena Martins; CARVALHO, João Olegário Pereira de; SILVA, José Natalino Macedo. Dinâmica da composição florística após a colheita de madeira em uma área de terra firme na Floresta Nacional do Tapajós (PA). **Revista de Ciências Agrárias**, Belém; n. 38, p. 67-90, jul./dez/2002.

ESCOBAR, Flávio Brazão. **Padrões estruturais fitossociológicos e áreas potenciais para corredores ecológicos na bacia do puraquequara Manaus – AM**. Manaus: UFA. Dissertação (Mestrado em Ciências Florestais e Ambientais), Universidade Federal do Amazonas, 2016.

FELFILI, Jeanine Maria. **Distribuição de diâmetros de quatro áreas de cerrado sensu stricto na Chapada do Espigão Mestre do São Francisco.** In Felfili Jeanine Maria, SILVA, Júnior Manoel Claudio da, organizadores. Biogeografia do bioma cerrado: **estudo fitofisionômico da Chapada do Espigão Mestre do São Francisco**. Brasília: UnB; 2001.

FELFILI, Jeanine Maria; VENTUROLI, Fabio. **Tópicos em Análise de Vegetação**. Brasília: UnB, Departamento de Engenharia Florestal, n.2, 34p. 2000.

FINGER, Cesar Augusto Guimarães. **Fundamentos de biometria florestal**. UFSM/CEPEF/FATEC. Santa Maria-RS. 269p, 1992.

FREITAS, Filipe Campos de. Fitossociologia e Distribuição Geográfica de Espécies Arbóreas Licenciadas em Planos de Manejo Florestal Sustentável em Pequena Escala Assistidos Pelo Instituto de Desenvolvimento Agropecuário e Florestal Sustentável do Estado do Amazonas. Universidade Federal do Amazonas, Manaus, 2014.

GARDIN, Edson. **Desenvolvimento e aplicação de software para análises da estrutura e dinâmica em florestas naturais**. Guarapuava, PR, 2011, 189p., Dissertação (Mestrado em Produção Vegetal), Universidade Estadual do Centro-Oeste.

GOMIDE, Guilherme Luiz Augusto. **Estrutura e dinâmica de crescimento de florestas tropicais primária e secundária no Estado do Pará**. Curitiba: UFP. Dissertação (Mestrado em Engenharia Florestal), Universidade Federal do Paraná, Curitiba, 1997.

GORENSTEIN, Mauricio Romero. **Métodos de amostragem no levantamento da comunidade arbórea em floresta estacional semidecidual** / Piracicaba. Dissertação (mestrado) - - Escola Superior de Agricultura Luiz de Queiroz, 2002.

HIGUCHI, Niro. Experiências e Resultados de Intervenções Silviculturais na Floresta Tropical Úmida de Terra-Firme na Região de Manaus. **Anais do Seminário** "O desafio das florestas neotropicais. Curitiba, PR, 1991. In: SIMPOSIO INTERNACIONAL "O DESAFIO DAS FLORESTAS NEOTROPICAIS, 1991, Curitiba. O desafio das florestas neotropicais. Curitiba: Universidade Federal do Paraná. Freiburg: Universidade Albert Ludwig, 1991. p.138-152.

IBGE. Instituto Brasileiro de Geografia e Estatística: **CENSO 2016**. Disponível em < https://cidades.ibge.gov.br/brasil/am/boa-vista-do-ramos/panorama Acesso em: 22 maio 2018.

JUVENAL, Thais Linhares; MATTOS, René Luiz Grion. O setor florestal no Brasil e a importância do reflorestamento. **BNDES Biblioteca Digital**, Rio de Janeiro-RJ, n. 16, p. 3-30, set. 2002. Disponível em: https://web.bndes.gov.br/bib/jspui/bitstream/1408/3142/1/BS 16 O Setor Florestal no Brasil e a Importância do Reflorestamento_P.pdf>. Acesso em: 10 abr. 2018.

KNIGHT, Dennis H. A phytosociological analysis of species-rich tropical forest on Barro Colorado Island, Panama. *Ecological Monographs*, 45: 259-28, 1975.

LAMPRECHT, H. **Silvicultura nos trópicos**: ecossistemas florestais e respectivas espécies arbóreas - possibilidades e métodos de aproveitamento sustentado. Eschborn: Deutsche Gessellschaft für Technische Zusammenarbeit (GTZ) GmbH, 343p - 1990.

LIMA FILHO, Diógenes de Andrade; REVILLA, Juan; AMARAL, Iêda Leão do; MATOS, Francisca Dionizia; COÊLHO, Luiz de Souza; RAMOS, José Ferreira. Inventário florístico de floresta ombrófila densa de terra firme, na região do Rio Urucu-Amazonas, Brasil. **Acta Amazônica**, p. 565-579, 2001.

LIMA FILHO, Diógenes de Andrade; REVILLA, Juan; AMARAL, Iêda. L; MATOS, Francisca. Dionizia; COÊLHO, Luiz de Souza; RAMOS, José Ferreira; SILVA, Gláucio Belém da; GUEDES, José Oliveira. Aspectos florísticos de 13 hectares da área de Cachoeira Porteira-PA. Supl. **Acta Amazônica**, 34(3) - p.415-423, 2004.

LIMA, Marcos Enoque Lima. Avaliação da estrutura do componente arbóreo de um fragmento de Floresta Ombrófila Densa Montana do Parque Natural Municipal Nascentes de Paranapiacaba, Santo André, São Paulo, Brasil, 2010.

MANZATTO, Ângelo Gilberto. **Dinâmica de um fragmento de Floresta Estacional Semidecidual no município de Rio Claro, SP, durante o período de 1989 – 2003.** Rio Claro: UEP. Tese (Doutorado em Ciências Biológicas) Instituto de Biociências, Universidade Estadual Paulista "Julio de Mesquita Filho", Rio Claro, 2005.

LIMA, João Adriano; LENTINI, Marco W. **Técnicas Pré-Exploratórias para o Planejamento da Exploração de Impacto Reduzido no Manejo Florestal Comunitário e Familiar**. Belém: IFT, 2013.

MARTINS, Fernando Roberto. **Estrutura de uma floresta mesófila.** Campinas: UNICAMP, 1993.

MARTINS, Fernando Roberto. **O método de quadrantes e fitossociologia de uma floresta residual no interior do Estado de São Paulo: Parque Estadual de Vassunga**. São Paulo: USP. Tese (Doutorado em Botânica) — Instituto de Botânica, Universidade de São Paulo, 1979.

MATOS, Francisca Dionízia de A.; AMARAL, Iêda Leão do. Análise ecológica de um hectare em floresta ombrófila densa de terra-firme, estrada da várzea, Amazonas, Brasil. **Acta Amazônica**, 29:(3) 65-379. 1999.

MEDINA, Gabriel da Silva; POKORNY, Benno. Avaliação Financeira do Manejo Florestal Comunitário. **Novos Cadernos NAEA**, v. 14, n. 2, p. 25-36, dez. 2011, ISSN 1516-6481. Disponível em: http://www.periodicos.ufpa.br/index.php/ncn/article/view/627/992. Acesso

em: 25 abril, 2018.

MINISTERIO DO DESENVOLVIMENTO AGRARIO - MDA. Plano Territorial de Desenvolvimento Rural Sustentável do Baixo Amazonas. Manaus: 2006.

MUELLER-DOMBOIS, D.; ELLENBERG, H. A. Aims and methods of vegetation ecology. New York: John Wiley, 547p. 1974.

OLIVEIRA, Arlem Nascimento.; AMARAL, Iêda Leão. 2004. Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. Acta Amazonica, 34:21-34. OLIVEIRA, Arlem Nascimento; AMARAL, Iêda Leão. 2005. Aspectos florísticos, fitossociológicos e ecológicos de um sub-bosque de terra firme na Amazônia Central, Amazonas, Brasil. Acta Amazonica, 35:1-16.

OLIVEIRA, Arlem Nascimento; AMARAL, Ieda Leão; RAMOS, Michele Braule Pinto; NOBRE, Antônio Donato; COUTO, Luciana Bovino; SAHDO, Rosana Marthiniano. Composição e diversidade florístico-estrutural de um hectare de floresta densa de terra firme na Amazônia Central, Amazonas, Brasil. **Acta Amazonica**, v.38, p. 627-642, 2008.

PAULA, Alessandro de; SILVA, Alexandre Francisco da; MARCO JÚNIOR, Paulo de; SANTOS, Flavio Antônio Meãs dos; SOUZA, Agostinho Lopes de. **Sucessão ecológica da vegetação arbórea em uma floresta estacional semidecidual**, Viçosa, MG, Brasil. Acta Botânica Brasílica, São Paulo, v. 18, n. 3, p. 407–423, 2004.

PÉLLICO NETTO, Sylvio; BRENA, Doádi Antônio. **Inventário Florestal**. Curitiba: Câmara Brasileira de Livros, 1997.

PEREIRA, Denys; SANTOS, Daniel; VEDOVETO, Mariana; GUIMARÃES, Jayne; VERÍSSIMO, Adalberto. **Fatos Florestais da Amazônia**. Belém: Imazon, 2010.

PINTO, Alberto Carlos Martins; SOUZA, Agostinho Lopes de; SOUZA, Amaury Paulo de; MACHADO, Carlos Cardoso; MINETTE, Luciano José; VALE, Antônio Bartolomeu do. Análise de Danos de Colheita de Madeira em Floresta Tropical Úmida Sob Regime de Manejo Florestal Sustentado na Amazônia Ocidental — R. Árvore, Viçosa-MG, v.26, n.4, p.459-466, 2002.

RABELO, Fernando Galvão; ZARIN, Daniel Jacob; OLIVEIRA, Francisco de Assis; JARDIM, Fernando Cristovam da Silva. Diversidade, composição florística e distribuição diamétrica do povoamento com DAP > 5cm em região de estuário no Amapá. **Revista de Ciências Agrárias**, Belém, n. 37, p. 91 –112, jan. / jun, 2002.

RADAMBRASIL. Departamento Nacional da Produção Mineral. **Folha SA 21-Satarém:** Geologia, Geomorfologia, Pedologia, Vegetação e Uso Potencial da Terra. Rio de Janeiro: Projeto RADAMBRASIL, 1975.

REIS, L. Serginande; COUTO, S. Celso; PINHEIRO, S. César; ESPADA, Ana Luiza Violato; LIMA, João Adriano; LENTINI, Marco W. **Técnicas Pré-Exploratórias para o Planejamento da Exploração de Impacto Reduzido no Manejo Florestal Comunitário e Familiar**. Belém: IFT, 2013.

RIBEIRO, Renato Bezerra Silva; GAMA, João Ricardo Vasconcelos; MARTINS, Sebastião. Venâncio; MORAES, Arlete; SANTOS, Clodoaldo Alcino Andrade; CARVALHO, Adenomar Neves de. Estrutura florestal em projeto de assentamento, comunidade São Mateus, município de Placas, Pará, Brasil. **Revista Ceres**, Viçosa, v. 60, n. 5, p. 610 - 620, 2013.

ROCHA, Rosana de Miranda. **Taxas de Recrutamento e Mortalidade da Floresta de Terrafirme da Bacia do Rio Cuieiras na região de Manaus.** Manaus: INPA/UEA, 2001. Dissertação (Mestrado em Florestas Tropicais), Universidade do Amazonas, Instituto Nacional de Pesquisas da Amazônia, 2001.

SILVA, Ivan Crespo.; GOMES, G. S. Sistemas agroflorestais: bases conceituais e uso no sul do Brasil. In: LOPES. E.S.; ARAUJO, A. J. L., K.C. (Ed.). **Semana de Estudos Florestais**, Irati, PR: UNICENTRO, p.23 - 2007.

SILVA, Katia Emídio; MATOS, Francisca Dionizia A.; FERREIRA, M. M. Composição florística e fitossociologia de espécies arbóreas do Parque Fenológico da Embrapa Amazônia Ocidental. **Acta Amazonica**, v.38, n.2, p. 213 – 222, 2008.

SILVA, Katia Emilio da; SOUZA, Cintia Rodrigues de; AZEVEDO, Celso Paulo de; ROSSI, Luiz Marcelo Brum. Dinâmica florestal, estoque de carbono e fitossociologia de uma floresta densa de terra-firme na Amazônia Central. **Scientia Forestalis**, volume 43, n. 105, 2015.

SILVA, Laerte Nogueira da; KIBLER, Jean François. Articulação regional e internacional no projeto Floresta Viva. In: **T&C Amazônia**, Ano VI, Número 15, outubro de 2008. p.34-42.

SILVA, Lucivânio Oliveira; COSTA, Diogo Andrade; SANTO FILHO, Kleber Espirito do; FERREIRA, Heleno Dias; BRANDÃO, Divino. Levantamento Florístico e Fitossociológico em duas áreas de cerrado sensu stricto no Parque Estadual da Serra de Caldas Novas, Goiás, **Acta Bot. Bras.** v. 16, n. 1, p. 43-53, 2002.

SILVA, S.M.G Descritores fitossociológico-estruturais para elaboração de diretrizes técnicas visando a conservação *in situ* da diversidade vegetal da Fazenda Experimental da UFAM. Manaus: UFAM, 2006. Dissertação (Mestrado). 132 f.: il.

SOBRINHO, José Cicero Pereira; MOREIRA, Jorgenor Dias; SOUZA, Omilio Santos; LIMA, Amanda Silva. **Plano de manejo florestal sustentável (PMFS).** Um estudo de caso no Estado de Rondônia. Porto Velho: Centro de Apoio Operacional do Meio Ambiente, 2010.

SOUZA, Deoclides Ricardo de; SOUZA, Agostinho Lopes; LEITE, Hélio Garcia; YARED, Jorge Alberto Gazel. Análise estrutural em floresta ombrófila densa de terra firme não explorada, Amazônia Oriental. **Revista Árvore.** Vol. 30, n°1, p. 75-87, 2006.

SOUZA, Pierre Farias. Estudos fitossociológicos e dendrométricos em um fragmento de caatinga, São José de Espinharas - PB. Patos, PB, 2012, 97p. Dissertação (Mestrado em Ciências Florestais), Universidade Federal de Campina Grande.

TELLO, Júlio Cézar Rodríguez. Diversidade Florística das Comunidades Vegetais de Uma Topossequência da Reserva Florestal Adolpho Ducke, MANAUS. **Revista da Universidade**

do Amazonas - SÉRIES CIÊNCIAS AGRÁRIAS, v. 6, n.1/2, p. 13-35, 1995.

TELLO, Júlio Cézar Rodríguez; PEDROSA, Susy Cristina da Silva; SANTOS, Roberta Monique da Silva; PEREIRA, Maria do Carmo Gomes; GARANTIZADO, Kamila Karla da Silva. Composição florística e aspectos da fisionomia das comunidades vegetais de baixio dos Igarapés Riacho Doce, Lages e Onça, localizadas no Município de Presidente Figueiredo, Estado do Amazonas, Brasil. Rev. Forest. Venez v.52 n.1 Mérida, 2008.

WALDHOFF, Philippe; VIDAL, Edson José da Silva. Community loggers attempting to legalize traditional timber harvesting in the Brazilian Amazon: An endless path. **Forest Policy and Economics**. January, Pages 311–318. 2015.

ANEXOS

 ${f ANEXO}$ A - Resultados da composição florística, de todas as três áreas de estudo.

Família	Código	Nome Científico	Nome Comum
Anacardiaceae	18	Anacardium spruceanum Benth. Ex Engl.	Cajuaçu
Anacardiaceae	51	Astronium lecointei Ducke	Muiracatiara
Apocynaceae	55	Aspidosperma desmanthum Benth. ex Müll.Arg.	Pequiá marfim
Arecaceae	73	Miconia regelii Cogn.	Tinteiro
	30	Handroanthus albus (Vahl) G.N.Nichols.	Ipê
Bignoniaceae	31	Tabebuia serratifolia (Vahl.) Nichols.	Ipê vermelho
	54	Tabebuia chrysantha (DC.) Nichols	Pau d'arco
Bombacaceae	60	Tovomita macrophylla Klotzsch	Sapateiro
	14	Tetragastris trifoliolata (Engl.) Cuatrec.	Breu
Burseraceae	15	Hemicrepidospermum rhoifolium (Benth.) Swart	Breu branco
Durseraceae	16	Trattinichia rhoifolia Willd.	Breu sucuruba
	17	Protium apiculatum Swart.	Breu vermelho
Comyogomogoo	57	Caryocar villosum Pers.	Piquiá
Caryocaraceae	58	Caryocar glabrum (Aubl.) Person	Piquiarana
Celastraceae	25	Goupia glabra Aubl.	Cupiúba
Clusiaceae	4	Symphonia globulifera Linn.	Anani
Ciusiaceae	34	Calophyllum brasiliense Camb.	Jacareúba
Combretaceae	67	Buchenavia viridiflora Ducke	Tanibuca

 $\bf ANEXO~A - Resultados da composição florística, de todas as três áreas de estudo.$

Família	Código	Nome Científico	Nome Comum
Elaeocarpaceae	74	Sloanea nitida G. Don.	Urucurana
Euphorbiaceae	3	Pogonophora schomburgkiana Miers. ex Benth	Amarelinho
Fabaceae	53	Pentaclethra macroloba (Willd.) Ducke	Paracaxi
Flacourtiaceae	56	Laetia procera Eichl.	Periquiteira
Guttiferae	5	Moronobea pulchra Ducke	Anani da terra firme
Humiriaceae	75	Vantanea micrantha Ducke	Uxi preto
	32	Mezilaurus itauba (meissn.) Taubert ex Mez.	Itaúba
	33	Mezilaurus lindaviana Schwacke & Mez	Itaúba abacate
	36	Nectandra discolor (H.B.K) Ness	Louro
	37	Aniba hostmanniana Mez.	Louro amarelo
	38	Licaria aritu Ducke	Louro aritu
Lauraceae ***	39	Licaria canela (Meisn.) Kosterm.	Louro chumbo
	41	Licaria sp.	Louro fofo
	42	Nectandra rubra (Mez) C. K. Allen	Louro gamela
	43	Dicypelium manausense W. Rodr.	Louro preto
	44	Aniba permollis Mez.	Louro rosa
	45	Licaria aurea (Huber) Kosterm.	Louro seda
Lecythidaceae	21	Lecthis pisonis Cambess.	Castanharana

 $\bf ANEXO~A - Resultados da composição florística, de todas as três áreas de estudo.$

Família	Código	Nome Científico	Nome Comum
	21	Lecthis pisonis Cambess.	Castanharana
Lagythidagaa	50	Eschweilera coriacea (A.P. de Candolle) S.A. Mori.	Matamatá
Lecythidaceae	69	Couratari guianensis Aubl.	Tauari
	70	Couratari multiflora (Smith) Gyma	Tauari amarelo
	35	Hymenaea courbaril Linn.	Jatobá
ag Cassalninioidasa	62	Tachigali myrmecophil a Ducke	Tachi
Leg. Caesalpinioideae	63	Sclerolobium paniculatum Vog.	Tachi branco
	64	Tachigalia myrmecophila Ducke	Tachi folha graúda
	65	Tachigalia paniculata Aubl.	Tachi preto
	66	Sclerolobium eriopetalum Ducke	Tachi vermelho
	7	Marmaroxylon racemosum (Ducke) Killip. Ex. Record	Angelim bordado
I M'	9	Hymenelobium pulcherrimum Ducke	Angelim pedra
Leg. Mimosoideae	10	Dinizia excelsa Ducke	Angelim vermelho
	26	Vatairea guianensis Aubl.	Fava
	6	Hymenolobium sp.	Angelim
I Danilla and I	8	Hymenolobium heterocarpum	Angelim branco
Leg. Papilionoideae	24	Dipteryx odorata Willd.	Cumaru
	27	Votairea sericea Ducke	Fava amargosa

 $\bf ANEXO~A - Resultados da composição florística, de todas as três áreas de estudo.$

Família	Código	Nome Científico	Nome Comum
	46	Platymisciumulei Harms	Macacaúba
Leg. Papilionoideae	61	Diplotropis martiusil Benth.	Sucupira
	71	Ormosia costulata (Miq.) Kleinh.	Tento
Meliaceae	23	Cedrela odorata L.	Cedro
Monimiaceae	19	Siparuma guianensis Aublet	Capitiú
Moraceae	28	Clarisia racemosa Ruiz & Pav.	Guariúba
Wioraceae	68	Bagassa guianensis Aubl.	Tatajuba
	11	Otoba pavifolia (Mgf.) A. H. Gentry	Arurá
	12	Osteophloeum platyspermum (A.DC.) Warb.	Arurá branco
Myristicaceae	13	Ityanthera juruensis Warb	Arurá vermelho
	76	Iryanthera sagotiana (Benth.) Warb.	Virola verdadeira
Olacaceae	2	Minquartia guianensis Aubl.	Acariquara
Proteaceae	40	Roupala brasiliensis	Louro faia
Rubiaceae	52	Capirona huberiana Ducke	Mulateiro
	20	Chrysophyllum oppositum (Ducke) Ducke	Caramuri
Comptagage	1	Microphilis williamii Aubr. El. Pellerg.	Abiurana
Sapotaceae	47	Manilkara huberi (Ducke) Chevalier	Maçaranduba
	59	Eschweilera micrantha Miers.	Ripeiro

$\bf ANEXO~A - Resultados da composição florística, de todas as três áreas de estudo.$

	Família	Código	Nome Científico	Nome Comum
Simaroubaceae		49	Simaruba amara Aubl.	Marupá
		29	Vochysia maxima Ducke	Guaruba
Vochysiaceae		48	Qualea paraensis Ducke	Mandioqueira
		72	Qualea cyanea Ducke	Tintarana

ANEXO B

Tabela B 1 – Área Curuçá Inventário florestal a 100% da área de estudo: distribuição, por espécie, de NT, AB, VT, V, AbsT, ABs, IND e condição de aproveitamento da tora.

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
ESI ECIES	NOWIE FOF CLAR	111	(N.ha ⁻¹)	(m ³)	(m³.ha ⁻¹)	(m²)	(m².ha ⁻¹)	ПЛ
Manilkara huberi (Ducke) Chevalier	Maçaranduba	108	1,08	605,63	6,06	53,02	0,53	12,04
Hymenaea courbaril Linn.	Jatobá	61	0,61	294,98	2,95	23,10	0,23	5,89
Couratari guianensis Aubl.	Tauari	39	0,39	310,99	3,11	26,17	0,26	5,61
Lecthis pisonis Cambess.	Castanharana	69	0,69	202,33	2,02	18,09	0,18	5,02
Astronium lecointei Ducke	Muiracatiara	43	0,43	221,38	2,21	17,34	0,17	4,34
Goupia glabra Aubl.	Cupiúba	37	0,37	210,41	2,10	20,16	0,20	4,31
Ityanthera juruensis Warb	Arurá vermelho	52	0,52	175,08	1,75	15,78	0,16	4,13
Hymenolobium petraeum Ducke	Angelim pedra	38	0,38	212,14	2,12	17,36	0,17	4,12
Buchenavia viridiflora Ducke	Tanibuca	22	0,22	203,53	2,04	19,37	0,19	3,75
Nectandra discolor (H.B.K) Ness	Louro	45	0,45	132,87	1,33	12,79	0,13	3,36
Tachigali myrmecophila Ducke	Tachi	42	0,42	93,05	0,93	9,37	0,09	2,70
Otoba pavifolia (Mgf.) A. H. Gentry	Arurá	27	0,27	131,57	1,32	10,08	0,10	2,60
Microphilis williamii Aubr. El. Pellerg.	Abiurana	35	0,35	95,17	0,95	9,26	0,09	2,50
Vochysia maxima Ducke	Guaruba	18	0,18	132,00	1,32	10,81	0,11	2,40
Dicypelium manausense W. Rodr.	Louro preto	37	0,37	75,85	0,76	7,69	0,08	2,29
Aspidosperma desmanthum Benth. ex Müll.Arg.	Pequiá marfim	31	0,31	92,30	0,92	7,52	0,08	2,22

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
ESI ECIES	NOME I OF CLAR	141	(N.ha ⁻¹)	(m³)	(m³.ha ⁻¹)	(m²)	(m².ha ⁻¹)	ПЪ
Mezilaurus itauba (meissn.) Taubert ex Mez.	Itaúba	36	0,36	48,77	0,49	6,61	0,07	1,97
Tabebuia serratifolia (Vahl.) Nichols.	Ipê vermelho	16	0,16	89,49	0,89	7,22	0,07	1,73
Simaruba amara Aubl.	Marupá	22	0,22	65,56	0,66	6,23	0,06	1,65
Bagassa guianensis Aubl.	Tatajuba	11	0,11	67,68	0,68	6,60	0,07	1,37
Tovomita macrophylla Klotzsch	Sapateiro	15	0,15	56,83	0,57	5,51	0,06	1,32
Nectandra rubra (Mez) C. K. Allen	Louro gamela	17	0,17	46,48	0,46	4,59	0,05	1,22
Diplotropis martiusil Benth.	Sucupira	13	0,13	58,08	0,58	4,85	0,05	1,21
Aniba permollis Mez.	Louro rosa	17	0,17	45,07	0,45	4,28	0,04	1,19
Moronobea pulchra Ducke	Anani da terra firme	13	0,13	49,35	0,49	4,72	0,05	1,14
Marmaroxylon racemosum (Ducke) Killip. Ex. Record	Angelim bordado	18	0,18	31,14	0,31	3,88	0,04	1,08
Votairea sericea Ducke	Fava amargosa	13	0,13	48,08	0,48	3,85	0,04	1,06
Osteophloeum platyspermum (A.DC.) Warb.	Arurá branco	11	0,11	46,00	0,46	4,54	0,05	1,04
Tachigalia paniculata Aubl.	Tachi preto	15	0,15	37,09	0,37	3,68	0,04	1,02
Dipteryx odorata Willd.	Cumaru	10	0,13	49,69	0,50	4,29	0,04	1,02
Pentaclethra macroloba (Willd.) Ducke	Paracaxi	12	0,12	44,51	0,45	3,95	0,04	1,01
Chrysophyllum oppositum (Ducke) Ducke	Caramuri	14	0,14	38,05	0,38	3,76	0,04	1,00
Aniba hostmanniana Mez.	Louro amarelo	18	0,18	17,91	0,18	1,87	0,02	0,82
Eschweilera coriacea (A.P. de Candolle) S.A. Mori.	Matamatá	11	0,11	19,89	0,20	2,61	0,03	0,69
Sclerolobium paniculatum Vog.	Tachi branco	10	0,10	23,71	0,24	2,53	0,03	0,68
Qualea cyanea Ducke	Tintarana	9	0,09	28,56	0,29	2,39	0,02	0,67

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
ESI ECIES	NOME TOTOLAR	111	(N.ha ⁻¹)	(m³)	(m³.ha ⁻¹)	(m ²)	(m².ha ⁻¹)	ПЪ
Vantanea micrantha Ducke	Uxi preto	7	0,07	26,94	0,27	2,27	0,02	0,59
Tetragastris trifoliolata (Engl.) Cuatrec.	Breu	5	0,05	29,84	0,30	2,60	0,03	0,58
Siparuma guianensis Aublet	Capitiú	7	0,07	22,00	0,22	2,11	0,02	0,54
Sclerolobium eriopetalum Ducke	Tachi vermelho	6	0,06	23,64	0,24	2,18	0,02	0,53
Licaria sp.	Louro fofo	11	0,11	9,16	0,09	1,15	0,01	0,49
Protium apiculatum Swart.	Breu vermelho	5	0,05	20,15	0,20	1,90	0,02	0,45
Cedrela odorata L.	Cedro	3	0,03	25,35	0,25	1,88	0,02	0,43
Hymenolobium heterocarpum Ducke	Angelim branco	5	0,05	17,22	0,17	1,56	0,02	0,40
Licaria aurea (Huber) Kosterm.	Louro seda	5	0,05	16,97	0,17	1,36	0,01	0,38
Iryanthera sagotiana (Benth.) Warb.	Virola verdadeira	6	0,06	12,49	0,12	1,04	0,01	0,36
Caryocar villosum Pers.	Piquiá	3	0,03	18,62	0,19	1,52	0,02	0,35
Tachigalia myrmecophila Ducke	Tachi folha graúda	4	0,04	14,32	0,14	1,52	0,02	0,35
Couratari multiflora (Smith) Gyma	Tauari amarelo	3	0,03	14,42	0,14	1,49	0,01	0,32
Laetia procera Eichl.	Periquiteira	2	0,02	12,68	0,13	1,81	0,02	0,30
Handroanthus albus (Vahl) G.N.Nichols.	Ipê	4	0,04	12,50	0,12	1,09	0,01	0,30
Pogonophora schomburgkiana Miers. ex Benth	Amarelinho	4	0,04	11,27	0,11	1,04	0,01	0,29
Platymiscium ulei Harms	Macacaúba	4	0,04	7,98	0,08	0,91	0,01	0,25
Roupala brasiliensis	Louro faia	3	0,03	9,82	0,10	0,92	0,01	0,24
Clarisia racemosa Ruiz & Pav.	Guariúba	3	0,03	8,95	0,09	0,85	0,01	0,22
Licaria aritu Ducke	Louro aritu	4	0,04	4,76	0,05	0,64	0,01	0,21

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
LSI ECIES	NOME TO CEAR	111	(N.ha ⁻¹)	(m³)	(m³.ha ⁻¹)	(m²) (m².ha ⁻¹)	III	
Eschweilera micrantha Miers.	Ripeiro	3	0,03	6,69	0,07	0,62	0,01	0,19
Symphonia globulifera Linn.	Anani	2	0,02	9,02	0,09	0,72	0,01	0,18
Trattinichia rhoifolia Willd.	Breu sucuruba	3	0,03	4,22	0,04	0,74	0,01	0,18
Dinizia excelsa Ducke	Angelim vermelho	1	0,01	10,03	0,10	0,72	0,01	0,16
Sloanea nitida G. Don.	Urucurana	2	0,02	6,43	0,06	0,52	0,01	0,15
Mezilaurus lindaviana Schwacke & Mez	Itaúba abacate	2	0,02	4,97	0,05	0,65	0,01	0,15
Miconia regelii Cogn.	Tinteiro	2	0,02	6,00	0,06	0,49	0,00	0,14
Tabebuia chrysantha (DC.) Nichols	Pau d'arco	2	0,02	5,43	0,05	0,53	0,01	0,14
Minquartia guianensis Aubl.	Acariquara	3	0,03	2,58	0,03	0,40	0,00	0,14
Anacardium spruceanum Benth. Ex Engl.	Cajuaçu	1	0,01	5,62	0,06	0,67	0,01	0,13
Vatairea guianensis Aubl.	Fava	1	0,01	6,27	0,06	0,50	0,00	0,12
Licaria canela (Meisn.) Kosterm.	Louro chumbo	3	0,03	1,02	0,01	0,21	0,00	0,11
Capirona huberiana Ducke	Mulateiro	1	0,01	4,58	0,05	0,39	0,00	0,10
Hemicrepidospermum rhoifolium (Benth.) Swart	Breu branco	1	0,01	4,91	0,05	0,35	0,00	0,09
Ormosia costulata (Miq.) Kleinh.	Tento	1	0,01	2,45	0,02	0,32	0,00	0,07
Calophyllum brasiliense Camb.	Jacareúba	1	0,01	2,23	0,02	0,32	0,00	0,07
Caryocar glabrum (Aubl.) Person	Piquiarana	1	0,01	2,41	0,02	0,23	0,00	0,07
Qualea paraensis Ducke	Mandioqueira	1	0,01	2,14	0,02	0,20	0,00	0,06
TOTAIS		1130	11,3	4507,31	45,07	404,29	4,04	100,00

Tabela B 2 – Área São Tomé - Inventário florestal a 100% da área de estudo: distribuição, por espécie, de NT, AB, VT, V, AbsT, ABs, IND e condição de aproveitamento da tora.

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
			(N.ha ⁻¹)	(m ³)	(m³.ha ⁻¹)	(m ²)	(m².ha ⁻¹)	
Manilkara huberi (Ducke) Chevalier	Maçaranduba	108	1,08	507,92	5,08	43,80	0,44	11,48
Hymenaea courbaril Linn.	Jatobá	56	0,56	328,77	3,29	25,63	0,26	6,76
Lecthis pisonis Cambess.	Castanharana	73	0,73	201,73	2,02	19,57	0,20	5,66
Goupia glabra Aubl.	Cupiúba	57	0,57	236,14	2,36	19,08	0,19	5,42
Couratari guianensis Aubl.	Tauari	31	0,31	249,76	2,50	20,74	0,21	4,91
Nectandra discolor (H.B.K) Ness	Louro	54	0,54	106,34	1,06	12,45	0,12	3,65
Pentaclethra macroloba (Willd.) Ducke	Paracaxi	32	0,32	152,07	1,52	13,94	0,14	3,50
Otoba pavifolia (Mgf.) A. H. Gentry	Arurá	37	0,37	124,37	1,24	12,69	0,13	3,31
Hymenolobium petraeum Ducke	Angelim pedra	24	0,24	136,42	1,36	11,74	0,12	2,93
Dicypelium manausense W. Rodr.	Louro preto	52	0,52	63,67	0,64	7,66	0,08	2,79
Astronium lecointei Ducke	Muiracatiara	23	0,23	138,25	1,38	10,20	0,10	2,78
Ityanthera juruensis Warb	Arurá vermelho	34	0,34	107,25	1,07	8,95	0,09	2,73
Mezilaurus itauba (meissn.) Taubert ex Mez.	Itaúba	44	0,44	45,66	0,46	6,61	0,07	2,31
Dipteryx odorata Willd.	Cumaru	21	0,21	100,37	1,00	8,84	0,09	2,27
Licaria sp.	Louro fofo	30	0,3	70,64	0,71	7,79	0,08	2,20
Vochysia maxima Ducke	Guaruba	18	0,18	83,30	0,83	8,39	0,08	2,00

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
	TOWE TOT CEAR	111	(N.ha ⁻¹)	(m ³)	(m³.ha ⁻¹)	(m ²)	(m².ha ⁻¹)	
Sclerolobium eriopetalum Ducke	Tachi vermelho	21	0,21	78,84	0,79	7,06	0,07	1,93
Diplotropis martiusil Benth.	Sucupira	17	0,17	57,69	0,58	6,12	0,06	1,55
Sclerolobium paniculatum Vog.	Tachi branco	23	0,23	43,35	0,43	4,97	0,05	1,51
Tachigalia paniculata Aubl.	Tachi preto	24	0,24	39,08	0,39	4,24	0,04	1,43
Caryocar glabrum (Aubl.) Person	Piquiarana	11	0,11	67,23	0,67	5,71	0,06	1,41
Tachigali myrmecophila Ducke	Tachi	16	0,16	57,07	0,57	4,80	0,05	1,40
Simaruba amara Aubl.	Marupá	20	0,2	45,74	0,46	4,38	0,04	1,38
Minquartia guianensis Aubl.	Acariquara	21	0,21	32,23	0,32	4,54	0,05	1,31
Aniba hostmanniana Mez.	Louro amarelo	16	0,16	40,54	0,41	3,86	0,04	1,17
Licaria canela (Meisn.) Kosterm.	Louro chumbo	16	0,16	31,88	0,32	4,22	0,04	1,13
Cedrela odorata L.	Cedro	6	0,06	56,46	0,56	4,96	0,05	1,10
Laetia procera Eichl.	Periquiteira	10	0,1	45,72	0,46	4,23	0,04	1,07
Couratari oblongifolia Ducke & R. Knuth.	Tauari branco	5	0,05	51,99	0,52	4,81	0,05	1,02
Handroanthus serratifolius (Vahl) S. Grose	ipê-amarelo	11	0,11	43,51	0,44	3,54	0,04	1,02
Eschweilera coriacea (A.P. de Candolle) S.A.	Matamatá	15	0,15	30,97	0,31	3,21	0,03	1,00
Micropholis venulosa (Mart. & Eichl.) Pierre	Abiurana branca	9	0,09	40,75	0,41	3,62	0,04	0,94
Hymenolobium heterocarpum Ducke	Angelim branco	9	0,09	40,46	0,40	3,28	0,03	0,91
Osteophloeum platyspermum (A.DC.) Warb.	Arurá branco	8	0,08	37,29	0,37	3,56	0,04	0,88
Marmaroxylon racemosum (Ducke) Killip. Ex.	Angelim bordado	14	0,14	20,02	0,20	2,24	0,02	0,79
Aniba permollis Mez.	Louro rosa	12	0,12	22,74	0,23	2,07	0,02	0,74

ESPECIES NOME I	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
ESI ECIES	TONE TOT CEAR	111	(N.ha ⁻¹)	(m ³)	(m³.ha ⁻¹)	(m ²)	(m².ha ⁻¹)	ПЪ
Handroanthus impetiginosus (Mart. ex DC.)	ipê-roxo	5	0,05	39,28	0,39	2,56	0,03	0,71
Roupala brasiliensis	Louro faia	8	0,08	25,63	0,26	2,56	0,03	0,69
Nectandra rubra (Mez) C. K. Allen	Louro gamela	8	0,08	27,50	0,28	2,33	0,02	0,68
Trichilia lepidota Mart.	Cedrinho	7	0,07	28,67	0,29	2,47	0,02	0,68
Libidibia ferrea (Mart. ex Tul.) L.P.Queiroz var.	Pau ferro	11	0,11	16,96	0,17	1,69	0,02	0,63
Qualea cyanea Ducke	Tintarana	11	0,11	15,57	0,16	1,51	0,02	0,60
Tapirira guianensis (Jacq.) Pers.	Cupiúba branca	5	0,05	21,04	0,21	2,88	0,03	0,59
Sclerolobium chrysophyllum Poepp. & Endl.	Tachi amarelo	4	0,04	18,53	0,19	2,01	0,02	0,46
Tovomita macrophylla Klotzsch	Sapateiro	4	0,04	18,61	0,19	1,98	0,02	0,46
Trattinichia rhoifolia Willd.	Breu sucuruba	3	0,03	24,49	0,24	1,75	0,02	0,45
Tetragastris trifoliolata (Engl.) Cuatrec.	Breu	5	0,05	16,25	0,16	1,55	0,02	0,43
Tabebuia serratifolia (Vahl.) Nichols.	Ipê vermelho	2	0,02	21,71	0,22	1,72	0,02	0,40
Microphilis williamii Aubr. El. Pellerg.	Abiurana	6	0,06	8,92	0,09	1,48	0,01	0,39
Mollia lepidota Spruce ex Benth	Sucuru	3	0,03	17,58	0,18	1,55	0,02	0,38
Cedrelinga catanaeformis Ducke	Cedrorana	2	0,02	19,06	0,19	1,51	0,02	0,36
Pouteria torta (Mart.) Radlk	Maçaranduba	3	0,03	16,16	0,16	1,23	0,01	0,34
Guatteria aff. procera	Envira preta	2	0,02	15,62	0,16	1,39	0,01	0,32
Eschweilera micrantha Miers.	Ripeiro	5	0,05	7,15	0,07	0,72	0,01	0,28
Lecythis usitata Miers.	Castanha sapucaia	3	0,03	8,32	0,08	1,08	0,01	0,26
Miconia regelii Cogn.	Tinteiro	3	0,03	8,10	0,08	1,03	0,01	0,25

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
		112	(N.ha ⁻¹)	(m³)	(m³.ha ⁻¹)	(m²)	(m².ha ⁻¹)	21 (2
Erisma calcaratum (Link.) Warm.	Guariúba vermelha	2	0,02	8,80	0,09	1,21	0,01	0,24
Geissospermum sericeum (Sagot) Benth.	Acariquara branca	4	0,04	6,14	0,06	0,71	0,01	0,24
Siparuma guianensis Aublet	Capitiú	3	0,03	6,22	0,06	0,75	0,01	0,21
Calophyllum brasiliense Camb.	Jacareúba	2	0,02	7,27	0,07	0,94	0,01	0,21
Nectandra cymbarum Ness	Louro inhamuí	3	0,03	5,11	0,05	0,61	0,01	0,19
Ocotea canaliculata Mez.	Louro branco	3	0,03	4,35	0,04	0,55	0,01	0,18
Andira parviflora Ducke	Sucupira vermelha	2	0,02	7,06	0,07	0,61	0,01	0,17
Chrysophyllum oppositum (Ducke) Ducke	Caramuri	2	0,02	5,27	0,05	0,65	0,01	0,16
Mezilaurus lindaviana Schwacke & Mez	Itaúba abacate	2	0,02	4,80	0,05	0,49	0,00	0,14
Enterolobium schomburgkii Benth.	Sucupira amarela	1	0,01	4,81	0,05	0,46	0,00	0,11
Inga sertulifera DC.	Ingá xixica	1	0,01	3,42	0,03	0,29	0,00	0,08
Votairea sericea Ducke	Fava amargosa	1	0,01	2,16	0,02	0,39	0,00	0,08
Moronobea pulchara Ducke	Anani da terra firme	1	0,01	2,89	0,03	0,26	0,00	0,08
Licaria guianensis Aubl.	Louro aritu	1	0,01	1,36	0,01	0,18	0,00	0,06
Pogonophora schomburgkiana Miers. ex Benth	Amarelinho	1	0,01	0,91	0,01	0,19	0,00	0,05
Ormosia costulata (Miq.) Kleinh.	Tento	1	0,01	1,06	0,01	0,13	0,00	0,05
TOTAIS		1108	11,08	3983,03	39,83	366,92	3,67	100,00

Tabela B 3 – **Área Monte Horebe** - Inventário florestal a 100% da área de estudo: distribuição, por espécie, de NT, AB, VT, V, AbsT, ABs, IND e condição de aproveitamento da tora.

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
ESI ECIES	NOME TOTOLAR	141	(N.ha ⁻¹)	(m ³)	(m³.ha ⁻¹)	(m ²)	(m².ha ⁻¹)	ПЛ
Hymenaea courbaril Linn.	Jatobá	79	0,79	466,48	4,66	35,78	0,36	9,18
Couratari guianensis Aubl.	Tauari	42	0,42	389,10	3,89	33,00	0,33	7,19
Goupia glabra Aubl.	Cupiúba	63	0,63	237,18	2,37	27,08	0,27	6,12
Manilkara huberi (Ducke) Chevalier	Maçaranduba	46	0,46	194,81	1,95	17,52	0,18	4,45
Lecthis pisonis Cambess.	Castanharana	58	0,58	138,74	1,39	14,02	0,14	4,08
Ityanthera juruensis Warb	Arurá vermelho	43	0,43	140,21	1,40	13,02	0,13	3,54
Tovomita macrophylla Klotzsch	Sapateiro	29	0,29	153,44	1,53	16,06	0,16	3,47
Nectandra discolor (H.B.K) Ness	Louro	52	0,52	99,98	1,00	11,92	0,12	3,41
Hymenolobium petraeum Ducke.	Angelim pedra	20	0,20	125,74	1,26	12,71	0,13	2,69
Tachigali myrmecophil a Ducke	Tachi	29	0,29	105,85	1,06	10,28	0,10	2,61
Otoba pavifolia (Mgf.) A. H. Gentry	Arurá	27	0,27	110,25	1,10	8,45	0,08	2,43
Scleronema micranthum Ducke	Cedrinho	25	0,25	94,06	0,94	9,04	0,09	2,29
Astronium lecointei Ducke	Muiracatiara	21	0,21	116,07	1,16	7,87	0,08	2,24
Eperua oleifera Ducke	Copaíba jacaré	21	0,21	95,34	0,95	9,28	0,09	2,19
Caryocar glabrum (Aubl.) Person	Piquiarana	10	0,10	111,55	1,12	11,40	0,11	2,16
Sclerolobium paniculatum Vog.	Tachi branco	27	0,27	77,28	0,77	8,43	0,08	2,16
Dicypelium manausense W. Rodr.	Louro preto	31	0,31	63,32	0,63	6,53	0,07	2,01
Mezilaurus itauba (meissn.) Taubert ex Mez.	Itaúba	31	0,31	42,03	0,42	5,06	0,05	1,72
Simaruba amara Aubl.	Marupá	22	0,22	53,17	0,53	5,90	0,06	1,60
Sclerolobium eriopetalum Ducke	Tachi vermelho	14	0,14	61,91	0,62	6,69	0,07	1,49
Handroanthus serratifolius (Vahl) S. Grose	ipê-amarelo	12	0,12	73,80	0,74	5,35	0,05	1,41
Dipteryx odorata Willd.	Cumaru	13	0,13	60,61	0,61	5,55	0,06	1,35
Pentaclethra macroloba (Willd.) Ducke	Paracaxi	12	0,12	59,98	0,60	5,51	0,06	1,31
Aspidosperma desmanthum Benth. ex Müll.Arg.	Pequiá marfim	18	0,18	48,78	0,49	4,12	0,04	1,29
Vochysia maxima Ducke	Guaruba	11	0,11	62,87	0,63	4,59	0,05	1,23
Ocotea myriantha Mez	Louro abacate	15	0,15	45,20	0,45	4,41	0,04	1,20

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
ESI ECIES	NOME TOTOLAR	111	(N.ha ⁻¹)	(m³)	(m³.ha ⁻¹)	(m²)	(m².ha ⁻¹)	ПЛ
Moronobea pulchra Ducke	Anani da terra firme	14	0,14	47,98	0,48	4,24	0,04	1,17
Minquartia guianensis Aubl.	Acariquara	29	0,29	12,34	0,12	2,14	0,02	1,17
Conceiveiba guianensis	Arara seringa	3	0,03	74,51	0,75	5,21	0,05	1,13
Nectandra rubra (Mez) C. K. Allen	Louro gamela	13	0,13	38,84	0,39	3,94	0,04	1,04
Trattinichia rhoifolia Willd.	Breu sucuruba	8	0,08	44,10	0,44	3,97	0,04	0,93
Eschweilera coriacea (A.P. de Candolle) S.A. Mori.	Matamatá	16	0,16	22,38	0,22	2,94	0,03	0,92
Tachigalia paniculata Aubl.	Tachi preto	12	0,12	30,53	0,31	3,50	0,03	0,91
Tapirira guianensis (Jacq.) Pers.	Cupiúba branca	10	0,10	29,06	0,29	3,24	0,03	0,81
Laetia procera Eichl.	Periquiteira	10	0,10	28,26	0,28	3,08	0,03	0,79
Tabebuia chrysantha (DC.) Nichols	Pau d'arco	5	0,05	44,51	0,45	3,34	0,03	0,79
Hymenolobium heterocarpum Ducke	Angelim branco	8	0,08	28,61	0,29	3,18	0,03	0,74
Couratari decandra Ducke	Tauari vermelho	6	0,06	31,11	0,31	2,98	0,03	0,69
Osteophloeum platyspermum (A.DC.) Warb.	Arurá branco	10	0,10	18,23	0,18	2,31	0,02	0,65
Tetragastris trifoliolata (Engl.) Cuatrec.	Breu	9	0,09	19,75	0,20	2,39	0,02	0,64
Microphilis williamii Aubr. El. Pellerg.	Abiurana	9	0,09	21,35	0,21	2,11	0,02	0,63
Eschweilera micrantha Miers.	Ripeiro	9	0,09	19,52	0,20	2,12	0,02	0,61
Marmaroxylon racemosum (Ducke) Killip. Ex. Record	Angelim bordado	7	0,07	20,72	0,21	2,30	0,02	0,58
Licaria guianensis Aubl.	Louro aritu	10	0,10	14,13	0,14	1,80	0,02	0,57
Licaria sp.	Louro fofo	11	0,11	11,27	0,11	1,63	0,02	0,57
Calophyllum brasiliense Cambess.	Jacareúba	5	0,05	23,57	0,24	2,42	0,02	0,55
Chlorophora tinctoria (L.) Gaudich	Tatajuba	2	0,02	33,42	0,33	2,56	0,03	0,54
Pogonophora schomburgkiana Miers. ex Benth	Amarelinho	7	0,07	19,86	0,20	1,92	0,02	0,54
Roupala brasiliensis	Louro faia	6	0,06	22,26	0,22	1,94	0,02	0,53
Enterolobium schomburgkii Benth.	Sucupira amarela	9	0,09	13,47	0,13	1,35	0,01	0,50
Tachigalia sp.	Tachi folha miúda	4	0,04	24,37	0,24	1,95	0,02	0,48
Siparuma guianensis Aublet	Capitiú	6	0,06	14,74	0,15	1,80	0,02	0,45
Buchenavia parvifolia Ducke	Tanimbuca amarela	3	0,03	19,72	0,20	1,88	0,02	0,41
Couratari multiflora (Smith) Gyma	Tauari amarelo	5	0,05	11,89	0,12	1,56	0,02	0,38
Tachigalia myrmecophila Ducke	Tachi folha graúda	4	0,04	17,81	0,18	1,36	0,01	0,38
Geissospermum sericeum (Sagot) Benth.	Acariquara branca	6	0,06	9,16	0,09	1,10	0,01	0,35

ESPECIES	NOME POPULAR	NT	AB	VT	V	ABsT	AbsT	IND
ESI ECIES	NONE TOTOLIN	111	(N.ha ⁻¹)	(m ³)	(m³.ha ⁻¹)	(m²)	(m².ha ⁻¹)	ПЪ
Votairea sericea Ducke	Fava amargosa	4	0,04	13,09	0,13	1,34	0,01	0,34
Aniba hostmanniana Mez.	Louro amarelo	6	0,06	7,86	0,08	0,99	0,01	0,33
Handroanthus impetiginosus (Mart. ex DC.) Mattos	ipê-roxo	3	0,03	13,48	0,13	1,36	0,01	0,31
Platymiscium ulei Harms	Macacaúba	3	0,03	14,50	0,15	1,16	0,01	0,31
Cedrela fissilis Vell.	Cedro vermelho	2	0,02	10,01	0,10	1,47	0,01	0,27
Miconia regelii Cogn.	Tinteiro	3	0,03	9,55	0,10	1,01	0,01	0,25
Dinizia excelsa Ducke	Angelim vermelho	1	0,01	13,37	0,13	1,27	0,01	0,25
Lecythis usitata Miers.	Castanha sapucaia	2	0,02	9,88	0,10	0,92	0,01	0,22
Couma utilis Muell. Arg.	Sorvinha	2	0,02	7,02	0,07	1,03	0,01	0,21
Couratari oblongifolia Ducke & R. Knuth.	Tauari branco	3	0,03	5,42	0,05	0,66	0,01	0,19
Symphonia globulifera Linn.	Anani	2	0,02	7,74	0,08	0,75	0,01	0,19
Iryanthera sagotiana (Benth.) Warb.	Virola verdadeira	3	0,03	5,02	0,05	0,62	0,01	0,18
Cedrela odorata L.	Cedro	2	0,02	5,94	0,06	0,85	0,01	0,18
Vatairea fusca Ducke	Amargosa	2	0,02	7,91	0,08	0,65	0,01	0,18
Clarisia racemosa Ruiz & Pav.	Guariúba	1	0,01	9,02	0,09	0,72	0,01	0,16
Ocotea canaliculata Mez.	Louro branco	1	0,01	6,96	0,07	0,76	0,01	0,15
Qualea cyanea Ducke	Tintarana	2	0,02	4,17	0,04	0,60	0,01	0,15
Brosimum parinarioides Ducke	Amapá	1	0,01	6,50	0,07	0,55	0,01	0,13
Anacardium spruceanum Benth. Ex Engl.	Cajuaçu	1	0,01	5,89	0,06	0,42	0,00	0,11
Diplotropis martiusil Benth.	Sucupira	1	0,01	4,90	0,05	0,32	0,00	0,10
Nectandra cymbarum Ness.	Louro inhamuí	2	0,02	1,42	0,01	0,16	0,00	0,09
Ocotea splendens Mez.	Itaúba preta	1	0,01	2,70	0,03	0,39	0,00	0,08
Buchenavia macrophylla Eichl.	Tanimbuca	1	0,01	2,71	0,03	0,26	0,00	0,07
Capirona huberiana Ducke	Mulateiro	2	0,02	0,00	0,00	0,00	0,00	0,06
Chrysophyllum sanguinolentum spp.	Balata	1	0,01	2,18	0,02	0,16	0,00	0,06
Chrysophyllum oppositum (Ducke) Ducke	Caramuri	1	0,01	1,09	0,01	0,16	0,00	0,05
Licaria canela (Meisn.) Kosterm.	Louro chumbo	1	0,01	1,04	0,01	0,13	0,00	0,05
Jacaranda copaia (Aubl.) D. Don	Pará Pará	1	0,01	0,33	0,00	0,08	0,00	0,04
TOTAIS		1082	10,82	4174,89	41,75	394,62	3,95	100,00

ANEXO C – Resultados das estimativas dos parâmetros da estrutura horizontal incluem a frequência, a densidade, a dominância, e os índices do valor de importância e do valor de cobertura de cada espécie amostrada.

Tabela C 1 – Estrutura Horizontal da Área Curuçá

ESPÉCIE	N	AB	DA	DR (%)	DOA	DOR	FA	FR	VC (%)	VI (%)
Manilkara huberi (Ducke) Chevalier	108	53,02	1,08	9,56	0,53	13,11	100,00	4,37	11,34	9,01
Hymenaea courbaril Linn.	61	23,10	0,61	5,40	0,23	5,71	90,00	3,93	5,56	5,01
Couratari guianensis Aubl.	39	26,17	0,39	3,45	0,26	6,47	90,00	3,93	4,96	4,62
Lecthis pisonis Cambess.	67	17,39	0,67	5,93	0,17	4,30	80,00	3,49	5,12	4,57
Astronium lecointei Ducke	43	17,34	0,43	3,81	0,17	4,29	100,00	4,37	4,05	4,15
Goupia glabra Aubl.	37	20,17	0,37	3,27	0,20	4,99	90,00	3,90	4,13	4,06
Hymenelobium pulcherrimum Ducke	38	17,36	0,38	3,36	0,17	4,29	100,00	4,37	3,83	4,01
Ityanthera juruensis Warb	52	15,79	0,52	4,60	0,16	3,90	50,00	2,18	4,25	3,56
Nectandra discolor (H.B.K) Ness	45	12,79	0,45	3,98	0,13	3,16	40,00	1,75	3,57	2,96
Mezilaurus itauba (meissn.) Taubert ex Mez.	36	6,61	0,36	3,19	0,07	1,63	70,00	3,06	2,41	2,63
Tachigali myrmecophila Ducke	42	9,37	0,42	3,72	0,09	2,32	40,00	1,75	3,02	2,59
Simaruba amara Aubl.	22	6,23	0,22	1,95	0,06	1,54	90,00	3,93	1,74	2,47
Dicypelium manausense W. Rodr.	37	7,69	0,37	3,27	0,08	1,90	50,00	2,18	2,59	2,45
Buchenavia viridiflora Ducke	22	19,37	0,22	1,95	0,19	4,79	10,00	0,44	3,37	2,39
Microphilis williamii Aubr. El. Pellerg.	35	9,26	0,35	3,10	0,09	2,29	40,00	1,75	2,69	2,38
Otoba pavifolia (Mgf.) A. H. Gentry	27	10,08	0,27	2,39	0,10	2,49	40,00	1,75	2,44	2,21

EGDÉGIE	N.T.	4 D	D.4	DR	DO 4	DOD	T2.4	ED	VC	VI
ESPÉCIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Vochysia maxima Ducke	18	10,81	0,18	1,59	0,11	2,67	50,00	2,18	2,13	2,15
Tabebuia serratifolia (Vahl.) Nichols.	16	7,22	0,16	1,42	0,07	1,78	50,00	2,18	1,60	1,79
Aspidosperma desmanthum Benth. ex Müll.Arg.	31	7,52	0,31	2,74	0,08	1,86	10,00	0,44	2,30	1,68
Diplotropis martiusil Benth.	13	4,85	0,13	1,15	0,05	1,20	60,00	2,62	1,18	1,66
Nectandra rubra (Mez) C. K. Allen	17	4,59	0,17	1,50	0,05	1,13	50,00	2,18	1,32	1,61
Moronobea pulchra Ducke	13	4,72	0,13	1,15	0,05	1,17	40,00	1,75	1,16	1,36
Marmaroxylon racemosum (Ducke) Killip. Ex.	17	3,17	0,17	1,50	0,03	0,78	40,00	1,75	1,14	1,34
Tovomita macrophylla Klotzsch	15	5,51	0,15	1,33	0,06	1,36	30,00	1,31	1,34	1,33
Chrysophyllum oppositum (Ducke) Ducke	14	3,76	0,14	1,24	0,04	0,93	40,00	1,75	1,08	1,31
Pentaclethra macroloba (Willd.) Ducke	12	3,95	0,12	1,06	0,04	0,98	40,00	1,75	1,02	1,26
Dipteryx odorata Willd.	10	4,29	0,1	0,88	0,04	1,06	40,00	1,75	0,97	1,23
Tachigalia paniculata Aubl.	15	3,69	0,15	1,33	0,04	0,91	30,00	1,31	1,12	1,18
Aniba permollis Mez.	17	4,28	0,17	1,50	0,04	1,06	20,00	0,87	1,28	1,15
Votairea sericea Ducke	13	3,85	0,13	1,15	0,04	0,95	30,00	1,31	1,05	1,14
Osteophloeum platyspermum (A.DC.) Warb.	11	4,54	0,11	0,97	0,05	1,12	30,00	1,31	1,05	1,14
Bagassa guianensis Aubl.	11	6,60	0,11	0,97	0,07	1,63	10,00	0,44	1,30	1,01
Aniba hostmanniana Mez.	18	1,88	0,18	1,59	0,02	0,46	20,00	0,87	1,03	0,98
Sclerolobium paniculatum Vog.	10	2,53	0,1	0,88	0,03	0,63	30,00	1,30	0,76	0,94
Qualea cyanea Ducke	9	2,39	0,09	0,80	0,02	0,59	30,00	1,30	0,69	0,90

PODÉCHE	N.T	A D	D.4	DR	DO 4	DOR	To A	ED	VC	VI
ESPÉCIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Tetragastris trifoliolata (Engl.) Cuatrec.	5	2,60	0,05	0,44	0,03	0,64	30,00	1,30	0,54	0,80
Sclerolobium eriopetalum Ducke	6	2,18	0,06	0,53	0,02	0,54	30,00	1,30	0,53	0,79
Licaria sp.	11	1,15	0,11	0,97	0,01	0,29	20,00	0,87	0,63	0,71
Eschweilera coriacea (A.P. de Candolle) S.A.	11	2,61	0,11	0,97	0,03	0,65	10,00	0,44	0,81	0,69
Cedrela odorata L.	3	1,88	0,03	0,27	0,02	0,47	30,00	1,31	0,37	0,68
Siparuma guianensis Aublet	7	2,11	0,07	0,62	0,02	0,52	20,00	0,87	0,57	0,67
Hymenolobium heterocarpum	5	1,56	0,05	0,44	0,02	0,39	20,00	0,87	0,41	0,57
Iryanthera sagotiana (Benth.) Warb.	6	1,04	0,06	0,53	0,01	0,26	20,00	0,87	0,39	0,55
Vantanea micrantha Ducke	7	2,27	0,07	0,62	0,02	0,56	10,00	0,44	0,59	0,54
Tachigalia myrmecophila Ducke	4	1,52	0,04	0,35	0,02	0,38	20,00	0,85	0,37	0,53
Caryocar villosum Pers.	3	1,52	0,03	0,27	0,02	0,38	20,00	0,87	0,32	0,51
Protium apiculatum Swart.	5	1,90	0,05	0,44	0,02	0,47	10,00	0,44	0,46	0,45
Clarisia racemosa Ruiz & Pav.	3	0,85	0,03	0,27	0,01	0,21	20,00	0,87	0,24	0,45
Eschweilera micrantha Miers.	3	0,62	0,03	0,27	0,01	0,15	20,00	0,87	0,21	0,43
Minquartia guianensis Aubl.	3	0,40	0,03	0,27	0,00	0,10	20,00	0,87	0,18	0,41
Licaria aurea (Huber) Kosterm.	5	1,36	0,05	0,44	0,01	0,34	10,00	0,44	0,39	0,40
Couratari multiflora (Smith) Gyma	3	1,49	0,03	0,27	0,02	0,37	10,00	0,44	0,32	0,36
Handroanthus albus (Vahl) G.N.Nichols.	4	1,09	0,04	0,35	0,01	0,27	10,00	0,44	0,31	0,35
Pogonophora schomburgkiana Miers. ex Benth	4	1,04	0,04	0,35	0,01	0,26	10,00	0,44	0,31	0,35

ESPÉCIE	N.T	A D	D.A	DR	DOA	DOP	T. A	ED	VC	VI
ESPECIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Laetia procera Eichl.	2	1,81	0,02	0,18	0,02	0,45	10,00	0,44	0,31	0,35
Platymiscium ulei Harms	4	0,91	0,04	0,35	0,01	0,23	10,00	0,44	0,29	0,34
Licaria aritu Ducke	4	0,64	0,04	0,35	0,01	0,16	10,00	0,44	0,26	0,32
Roupala brasiliensis	3	0,92	0,03	0,27	0,01	0,23	10,00	0,44	0,25	0,31
Trattinichia rhoifolia Willd.	3	0,74	0,03	0,27	0,01	0,18	10,00	0,44	0,22	0,30
Symphonia globulifera Linn.	2	0,72	0,02	0,18	0,01	0,18	10,00	0,44	0,18	0,26
Eschweilera sp.	2	0,70	0,02	0,18	0,01	0,17	10,00	0,44	0,18	0,26
Mezilaurus lindaviana Schwacke & Mez	2	0,65	0,02	0,18	0,01	0,16	10,00	0,44	0,17	0,26
Licaria canela (Meisn.) Kosterm.	3	0,20	0,03	0,27	0,00	0,05	10,00	0,44	0,16	0,25
Tabebuia chrysantha (DC.) Nichols	2	0,53	0,02	0,16	0,01	0,13	10,00	0,44	0,15	0,25
Sloanea nitida G. Don.	2	0,52	0,02	0,18	0,01	0,13	10,00	0,44	0,15	0,25
Miconia regelii Cogn.	2	0,49	0,02	0,18	0,01	0,12	10,00	0,44	0,15	0,24
Hymenolobium sp.	1	0,72	0,01	0,09	0,01	0,18	10,00	0,44	0,13	0,23
Dinizia excelsa Ducke	1	0,72	0,01	0,09	0,01	0,18	10,00	0,44	0,13	0,23
Anacardium spruceanum Benth. Ex Engl.	1	0,67	0,01	0,09	0,01	0,17	10,00	0,44	0,13	0,23
Vatairea guianensis Aubl.	1	0,50	0,01	0,09	0,01	0,12	10,00	0,44	0,12	0,22
Capirona huberiana Ducke	1	0,39	0,01	0,09	0,01	0,10	10,00	0,44	0,09	0,21
Hemicrepidospermum rhoifolium (Benth.) Swart	1	0,35	0,01	0,09	0,00	0,09	10,00	0,44	0,09	0,21
Calophyllum brasiliense Camb.	1	0,32	0,01	0,09	0,00	0,08	10,00	0,44	0,08	0,21

ESPÉCIE	N	A D	DA	DR	DOA	DOR	ΕA	ED	VC	VI
ESPECIE	N	AB	DA	(%)	DOA	DOK	FA	FR	(%)	(%)
Ormosia costulata (Miq.) Kleinh.	1	0,32	0,01	0,09	0,00	0,08	10,00	0,44	0,08	0,21
Caryocar glabrum (Aubl.) Person	1	0,23	0,01	0,09	0,00	0,06	10,00	0,44	0,07	0,20
Qualea paraensis Ducke	1	0,20	0,01	0,09	0,00	0,05	10,00	0,44	0,07	0,19
TOTAL	1130	404,28	11,3	100,00	4,05	100,00	2290,0	100,00	100,00	100,00

Tabela C 2 – Estrutura Horizontal da área São Tomé

ESPÉCIE	N	AB	DA	DR	DOA	DOR	FA	FR	VC	VI
				(%)					(%)	(%)
Manilkara huberi (Ducke) Chevalier	108	43,80	1,08	9,75	0,44	11,94	100	4,13	10,84	8,61
Lecthis pisonis Cambess.	73	19,57	0,73	6,59	0,20	5,33	90	3,72	6,02	5,39
Goupia glabra Aubl.	57	19,08	0,57	5,14	0,19	5,20	80	3,31	5,96	5,21
Hymenaea courbaril Linn.	56	25,63	0,56	5,05	0,26	6,99	100	4,13	5,17	4,55
Otoba pavifolia (Mgf.) A. H. Gentry	37	12,69	0,37	3,34	0,13	3,46	50	2,07	4,23	3,64
Couratari guianensis Aubl.	31	20,74	0,31	2,80	0,21	5,65	60	2,48	3,39	3,36
Ityanthera juruensis Warb	34	8,95	0,34	3,07	0,09	2,44	60	2,48	4,13	3,17
Nectandra discolor (H.B.K) Ness	54	12,45	0,54	4,87	0,13	3,39	30	1,24	3,34	3,06
Dicypelium manausense W. Rodr.	52	7,66	0,52	4,69	0,08	2,09	80	3,31	3,40	2,95
Pentaclethra macroloba (Willd.) Ducke	32	13,94	0,32	2,89	0,14	3,80	60	2,48	2,89	2,89
Astronium lecointei Ducke	23	10,20	0,23	2,08	0,10	2,78	80	3,31	2,43	2,72
Mezilaurus itauba (meissn.) Taubert ex Mez.	44	6,61	0,44	3,97	0,07	1,80	70	2,89	2,75	2,66
Hymenolobium petraeum Ducke	24	11,75	0,24	2,17	0,12	3,20	60	2,48	2,68	2,62
Licaria sp.	30	7,79	0,30	2,71	0,08	2,12	60	2,48	2,42	2,44
Dipteryx odorata Willd.	21	8,84	0,21	1,90	0,09	2,41	50	2,07	2,15	2,12
Simaruba amara Aubl.	20	4,38	0,20	1,81	0,04	1,19	70	2,89	1,50	1,96
Vochysia maxima Ducke	18	8,39	0,18	1,62	0,08	2,29	40	1,65	1,96	1,85
Sclerolobium eriopetalum Ducke	21	7,06	0,21	1,90	0,07	1,92	40	1,65	1,91	1,82
Tachigalia paniculata Aubl.	24	4,24	0,24	2,17	0,04	1,16	50	2,07	1,66	1,80
Diplotropis martiusil Benth.	17	6,12	0,17	1,53	0,06	1,67	50	2,07	1,60	1,76
Minquartia guianensis Aubl.	21	4,54	0,21	1,90	0,05	1,24	50	2,07	1,57	1,73
Sclerolobium paniculatum Vog.	23	4,97	0,23	2,08	0,05	1,35	40	1,65	1,71	1,69

	TA T	A D	D.4	DR	DO 4	DOD	TC A	ED	VC	VI
ESPÉCIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Tachigali myrmecophila Ducke	16	4,80	0,16	1,44	0,05	1,31	40	1,65	1,38	1,47
Licaria canela (Meisn.) Kosterm.	16	4,22	0,16	1,44	0,04	1,15	40	1,65	1,30	1,42
Aniba hostmanniana Mez.	16	3,86	0,16	1,44	0,04	1,05	40	1,65	1,25	1,38
Handroanthus serratifolius (Vahl) S.) Grose	11	3,54	0,11	0,99	0,04	0,97	50	2,07	0,98	1,34
Marmaroxylon racemosum (Ducke) Killip. Ex.	14	2,24	0,14	1,26	0,02	0,61	50	2,07	0,94	1,31
Caryocar glabrum (Aubl.) Person	11	5,71	0,11	0,99	0,06	1,56	30	1,24	1,27	1,26
Laetia procera Eichl.	10	4,23	0,10	0,90	0,04	1,15	40	1,65	1,03	1,24
Cedrela odorata L.	6	4,96	0,06	0,54	0,05	1,35	40	1,65	0,95	1,18
Eschweilera coriacea (A.P. de Candolle) S.A. Mori.	15	3,21	0,15	1,35	0,03	0,88	30	1,24	1,11	1,16
Hymenolobium heterocarpum Ducke	9	3,28	0,09	0,81	0,03	0,90	40	1,65	0,85	1,12
Roupala brasiliensis	8	2,56	0,08	0,72	0,03	0,70	40	1,65	0,71	1,02
Osteophloeum platyspermum (A.DC.) Warb.	8	3,56	0,08	0,72	0,04	0,97	30	1,24	0,85	0,98
Qualea cyanea Ducke	11	1,51	0,11	0,99	0,02	0,41	30	1,24	0,70	0,88
Micropholis venulosa (Mart. & Eichl.) Pierre	9	3,62	0,09	0,81	0,04	0,99	20	0,83	0,90	0,88
Trichilia lepidota Mart.	7	2,47	0,07	0,63	0,03	0,67	30	1,25	0,65	0,85
Aniba permollis Mez.	12	2,07	0,12	1,08	0,02	0,57	20	0,83	0,82	0,82
Nectandra rubra (Mez) C. K. Allen	8	2,33	0,08	0,72	0,02	0,64	20	0,83	0,68	0,73
Couratari oblongifolia Ducke & R. Knuth.	5	4,81	0,05	0,45	0,05	1,31	10	0,41	0,88	0,73
Tapirira guianensis (Jacq.) Pers.	5	2,88	0,05	0,45	0,03	0,78	20	0,83	0,62	0,69
Handroanthus impetiginosus (Mart. ex DC.) Mattos	5	2,56	0,05	0,45	0,03	0,70	20	0,83	0,57	0,66
Libidibia ferrea (Mart. ex Tul.) L.P.Queiroz var.	11	1,69	0,11	0,99	0,02	0,46	10	0,41	0,73	0,62
Tovomita macrophylla Klotzsch	4	1,98	0,04	0,36	0,02	0,54	20	0,83	0,45	0,58
Trattinichia rhoifolia Willd.	3	1,75	0,03	0,27	0,02	0,48	20	0,83	0,37	0,52
Eschweilera micrantha Miers.	5	0,72	0,05	0,45	0,01	0,19	20	0,83	0,32	0,49
Cedrelinga catanaeformis Ducke	2	1,51	0,02	0,18	0,02	0,41	20	0,83	0,30	0,47
Geissospermum sericeum (Sagot) Benth.	4	0,71	0,04	0,36	0,01	0,19	20	0,83	0,28	0,46

	N.T.	A.D.	D.4	DR	DO 4	DOP		ED	VC	VI
ESPÉCIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Lecythis usitata Miers.	3	1,08	0,03	0,27	0,01	0,30	20	0,83	0,28	0,46
Microphilis williamii Aubr. El. Pellerg.	6	1,48	0,06	0,54	0,02	0,40	10	0,41	0,47	0,45
Sclerolobium chrysophyllum Poepp. & Endl.	4	2,01	0,04	0,41	0,02	0,55	10	0,41	0,45	0,44
Tetragastris trifoliolata (Engl.) Cuatrec.	5	1,55	0,05	0,45	0,02	0,42	10	0,41	0,44	0,43
Siparuma guianensis Aublet	3	0,75	0,03	0,27	0,01	0,20	20	0,83	0,24	0,43
Ocotea canaliculata Mez.	3	0,55	0,03	0,27	0,01	0,15	20	0,83	0,21	0,42
Calophyllum brasiliense Camb.	2	0,94	0,02	0,18	0,01	0,26	20	0,83	0,22	0,42
Andira parviflora Ducke	2	0,61	0,02	0,18	0,01	0,17	20	0,83	0,17	0,39
Tabebuia serratifolia (Vahl.) Nichols.	2	1,72	0,02	0,18	0,02	0,47	10	0,41	0,33	0,35
Pouteria torta (Mart.) Radlk	3	1,23	0,03	0,27	0,01	0,34	10	0,41	0,30	0,34
Miconia regelii Cogn.	3	1,03	0,03	0,27	0,01	0,28	10	0,41	0,28	0,32
Guatteria aff. procera	2	1,39	0,02	0,18	0,01	0,38	10	0,41	0,28	0,32
Erisma calcaratum (Link.) Warm.	2	1,21	0,02	0,18	0,01	0,33	10	0,41	0,26	0,31
Nectandra cymbarum Ness	3	0,61	0,03	0,27	0,01	0,17	10	0,41	0,22	0,28
Chrysophyllum oppositum (Ducke) Ducke	2	0,65	0,02	0,18	0,01	0,18	10	0,41	0,18	0,26
Mollia lepidota Spruce ex Benth	1	0,98	0,01	0,09	0,01	0,27	10	0,41	0,18	0,26
Mollia lepidota Spruce ex Benth	2	0,58	0,02	0,18	0,01	0,16	10	0,41	0,17	0,25
Mezilaurus lindaviana Schwacke & Mez	2	0,49	0,02	0,18	0,01	0,13	10	0,41	0,16	0,24
Enterolobium schomburgkii Benth.	1	0,46	0,01	0,09	0,01	0,12	10	0,41	0,11	0,21
Votairea sericea Ducke	1	0,39	0,01	0,09	0,00	0,10	10	0,41	0,10	0,24
Inga sertulifera DC.	1	0,29	0,01	0,09	0,00	0,08	10	0,41	0,08	0,19
Moronobea pulchara Ducke	1	0,26	0,01	0,09	0,00	0,07	10	0,41	0,08	0,19
Pogonophora schomburgkiana Miers. ex Benth	1	0,19	0,01	0,09	0,00	0,05	10	0,41	0,07	0,18
Licaria guianensis Aubl.	1	0,18	0,01	0,09	0,00	0,05	10	0,41	0,07	0,18
Ormosia costulata (Miq.) Kleinh.	1	0,13	0,01	0,09	0,00	0,01	10	0,41	0,05	0,18
TOTAL	1108	366,92	11,08	100	3,67	100	2420	100	100	100

Tabela C 3 – Estrutura Horizontal da Área Monte Horebe

,	NT.	4 D	D.4	DR	DO 4	DOD	TEA	ED	VC	VI
ESPÉCIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Hymenaea courbaril Linn.	79	35,78	0,79	7,30	0,36	9,07	90,00	4,35	8,18	6,90
Goupia glabra Aubl.	63	27,08	0,63	5,82	0,27	6,86	70,00	3,38	6,34	5,36
Couratari guianensis Aubl.	42	33,00	0,42	3,88	0,33	8,36	70,00	3,38	6,12	5,21
Lecthis pisonis Cambess.	58	14,02	0,58	5,36	0,14	3,55	80,00	3,86	4,46	4,26
Manilkara huberi (Ducke) Chevalier	46	17,52	0,46	4,25	0,18	4,44	60,00	2,90	4,35	3,86
Ityanthera juruensis Warb	43	13,02	0,43	3,97	0,13	3,30	70,00	3,38	3,64	3,55
Nectandra discolor (H.B.K) Ness	52	11,92	0,52	4,81	0,12	3,02	40,00	1,93	3,91	3,25
Astronium lecointei Ducke	21	7,87	0,21	1,94	0,08	1,99	90,00	4,35	1,97	2,76
Tovomita macrophylla Klotzsch	29	16,06	0,29	2,68	0,16	4,07	30,00	1,45	3,37	2,73
Mezilaurus itauba (meissn.) Taubert ex Mez.	31	5,07	0,31	2,87	0,05	1,28	60,00	2,90	2,07	2,35
Dicypelium manausense W. Rodr.	31	6,53	0,31	2,87	0,07	1,65	50,00	2,42	2,26	2,31
Tachigali myrmecophila Ducke	29	10,28	0,29	2,68	0,10	2,60	30,00	1,45	2,64	2,24
Sclerolobium paniculatum Vog.	27	8,43	0,27	2,50	0,08	2,14	30,00	1,45	2,32	2,03
Otoba pavifolia (Mgf.) A. H. Gentry	27	8,45	0,27	2,50	0,08	2,14	20,00	0,97	2,32	1,87
Simaruba amara Aubl.	22	5,90	0,22	2,03	0,06	1,50	40,00	1,93	1,76	1,82
Caryocar glabrum (Aubl.) Person	10	11,40	0,10	0,92	0,11	2,89	30,00	1,45	1,91	1,75
Scleronema micranthum Ducke	25	9,04	0,25	2,31	0,09	2,29	10,00	0,48	2,30	1,70
Hymenelobium pulcherrimum Ducke	15	5,01	0,15	1,39	0,05	1,27	50,00	2,42	1,33	1,69
Eperua oleifera Ducke	21	9,28	0,21	1,94	0,09	2,35	10,00	0,48	2,15	1,59
Nectandra rubra (Mez) C. K. Allen	13	3,94	0,13	1,20	0,04	1,00	50,00	2,42	1,10	1,54
Dipteryx odorata Willd.	13	5,55	0,13	1,20	0,06	1,41	40,00	1,93	1,30	1,51
Handroanthus serratifolius (Vahl) S.). Grose	12	5,35	0,12	1,11	0,05	1,35	40,00	1,93	1,23	1,47
Minquartia guianensis Aubl.	29	2,14	0,29	2,68	0,02	0,54	20,00	0,97	1,61	1,40
Eschweilera coriacea (A.P. de Candolle) S.A.	16	2,94	0,16	1,48	0,03	0,74	40,00	1,93	1,11	1,39

		4.5		DR	D O 4	D.O.D.			VC	VI
ESPÉCIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Sclerolobium eriopetalum Ducke	14	6,70	0,14	1,29	0,07	1,70	20,00	0,97	1,50	1,32
Moronobea pulchra Ducke	14	4,24	0,14	1,29	0,04	1,08	30,00	1,45	1,18	1,27
Ocotea myriantha Mez	15	4,41	0,15	1,39	0,04	1,12	20,00	0,97	1,25	1,16
Pentaclethra macroloba (Willd.) Ducke	12	5,51	0,12	1,11	0,06	1,40	20,00	0,97	1,25	1,16
Hymenelobium pulcherrimum Ducke	5	7,70	0,05	0,46	0,08	1,95	20,00	0,97	1,21	1,13
Tapirira guianensis (Jacq.) Pers.	10	3,24	0,10	0,92	0,03	0,82	30,00	1,45	0,87	1,06
Aspidosperma desmanthum Benth. ex Müll.Arg.	18	4,12	0,18	1,66	0,04	1,04	10,00	0,48	1,35	1,06
Laetia procera Eichl.	10	3,09	0,10	0,92	0,03	0,78	30,00	1,45	0,85	1,05
Vochysia maxima Ducke	11	4,60	0,11	1,02	0,05	1,16	20,00	0,97	1,09	1,05
Tachigalia paniculata Aubl.	12	3,50	0,12	1,11	0,04	0,89	20,00	0,97	1,00	0,99
Licaria guianensis Aubl.	10	1,80	0,10	0,92	0,02	0,46	30,00	1,45	0,69	0,94
Trattinichia rhoifolia Willd.	8	3,97	0,08	0,74	0,04	1,01	20,00	0,97	0,87	0,90
Pogonophora schomburgkiana Miers. ex Benth	7	1,92	0,07	0,65	0,02	0,49	30,00	1,45	0,57	0,86
Osteophloeum platyspermum (A.DC.) Warb.	10	2,31	0,10	0,92	0,02	0,59	20,00	0,97	0,75	0,83
Tetragastris trifoliolata (Engl.) Cuatrec.	9	2,39	0,09	0,83	0,02	0,61	20,00	0,97	0,72	0,80
Eschweilera micrantha Miers.	9	2,12	0,09	0,83	0,02	0,54	20,00	0,97	0,68	0,78
Microphilis williamii Aubr. El. Pellerg.	9	2,11	0,09	0,83	0,02	0,53	20,00	0,97	0,68	0,78
Geissospermum sericeum (Sagot) Benth.	6	1,10	0,06	0,55	0,01	0,28	30,00	1,45	0,42	0,76
Couratari decandra Ducke	6	2,98	0,06	0,55	0,03	0,76	20,00	0,97	0,65	0,76
Tabebuia chrysantha (DC.) Nichols	5	3,34	0,05	0,46	0,03	0,85	20,00	0,97	0,65	0,76
Marmaroxylon racemosum (Ducke) Killip. Ex.	7	2,30	0,07	0,65	0,02	0,58	20,00	0,97	0,62	0,73
Enterolobium schomburgkii Benth.	9	1,36	0,09	0,83	0,01	0,34	20,00	0,97	0,59	0,71
Conceiveiba guianensis	3	5,21	0,03	0,28	0,05	1,32	10,00	0,48	0,80	0,69
Calophyllum brasiliense Cambess.	5	2,42	0,05	0,46	0,02	0,61	20,00	0,97	0,54	0,68
Hymenolobium heterocarpum Ducke	8	3,18	0,08	0,74	0,03	0,81	10,00	0,48	0,77	0,68
Roupala brasiliensis	6	1,94	0,06	0,55	0,02	0,49	20,00	0,97	0,52	0,67
Siparuma guianensis Aublet	6	1,80	0,06	0,55	0,02	0,46	20,00	0,97	0,51	0,66

			- .	DR		DOD			VC	VI
ESPÉCIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Licaria sp.	11	1,63	0,11	1,02	0,02	0,41	10,00	0,48	0,71	0,64
Couratari multiflora (Smith) Gyma	5	1,56	0,05	0,46	0,02	0,39	20,00	0,97	0,43	0,61
Aniba hostmanniana Mez.	6	0,99	0,06	0,55	0,01	0,25	20,00	0,97	0,40	0,59
Votairea sericea Ducke	4	1,34	0,04	0,37	0,01	0,34	20,00	0,97	0,35	0,56
Iryanthera sagotiana (Benth.) Warb.	3	0,62	0,03	0,28	0,01	0,16	20,00	0,97	0,22	0,47
Tachigalia sp.	4	1,95	0,04	0,37	0,02	0,49	10,00	0,48	0,43	0,45
Chlorophora tinctoria (L.) Gaudich	2	2,56	0,02	0,18	0,03	0,65	10,00	0,48	0,42	0,44
Buchenavia parvifolia Ducke	3	1,88	0,03	0,28	0,02	0,48	10,00	0,48	0,38	0,41
Tachigalia myrmecophila Ducke	4	1,36	0,04	0,37	0,01	0,34	10,00	0,48	0,36	0,40
Handroanthus impetiginosus (Mart. ex DC.)	3	1,36	0,03	0,28	0,01	0,34	10,00	0,48	0,31	0,37
Platymiscium ulei Harms	3	1,16	0,03	0,28	0,01	0,29	10,00	0,48	0,29	0,35
Cedrela fissilis Vell.	2	1,47	0,02	0,18	0,02	0,37	10,00	0,48	0,28	0,35
Miconia regelii Cogn.	3	1,01	0,03	0,28	0,01	0,26	10,00	0,48	0,27	0,34
Couma utilis Muell. Arg.	2	1,04	0,02	0,18	0,01	0,26	10,00	0,48	0,22	0,31
Couratari oblongifolia Ducke & R. Knuth.	3	0,66	0,03	0,28	0,01	0,17	10,00	0,48	0,22	0,31
Lecythis usitata Miers.	2	0,92	0,02	0,18	0,01	0,23	10,00	0,48	0,21	0,30
Dinizia excelsa Ducke	1	1,27	0,01	0,09	0,01	0,32	10,00	0,48	0,21	0,30
Cedrela odorata L.	2	0,85	0,02	0,18	0,01	0,21	10,00	0,48	0,20	0,29
Symphonia globulifera Linn.	2	0,75	0,02	0,18	0,01	0,19	10,00	0,48	0,19	0,29
Vatairea fusca Ducke	2	0,65	0,02	0,18	0,01	0,16	10,00	0,48	0,17	0,28
Qualea cyanea Ducke	2	0,60	0,02	0,18	0,01	0,15	10,00	0,48	0,17	0,27
Ocotea canaliculata Mez.	1	0,77	0,01	0,09	0,01	0,19	10,00	0,48	0,14	0,26
Clarisia racemosa Ruiz & Pav.	1	0,72	0,01	0,09	0,01	0,18	10,00	0,48	0,14	0,25
Brosimum parinarioides Ducke	1	0,55	0,01	0,09	0,01	0,14	10,00	0,48	0,12	0,24
Nectandra cymbarum Ness.	2	0,16	0,02	0,18	0,00	0,04	10,00	0,48	0,11	0,24
Anacardium spruceanum Benth. Ex Engl.	1	0,42	0,01	0,09	0,00	0,11	10,00	0,48	0,10	0,23
Ocotea splendens Mez.	1	0,39	0,01	0,09	0,00	0,10	10,00	0,48	0,10	0,22

	NT	A D	DA	DR	DOA	DOD	ΤΕΛ	ED	VC	VI
ESPÉCIE	N	AB	DA	(%)	DOA	DOR	FA	FR	(%)	(%)
Capirona huberiana Ducke	2	0,00	0,02	0,18	0,00	0,00	10,00	0,48	0,09	0,22
Diplotropis martiusil Benth.	1	0,32	0,01	0,09	0,00	0,08	10,00	0,48	0,09	0,22
Buchenavia macrophylla Eichl.	1	0,26	0,01	0,09	0,00	0,07	10,00	0,48	0,08	0,21
Chrysophyllum sanguinolentum spp.	1	0,16	0,01	0,09	0,00	0,04	10,00	0,48	0,07	0,21
Chrysophyllum oppositum (Ducke) Ducke	1	0,16	0,01	0,09	0,00	0,04	10,00	0,48	0,07	0,21
Licaria canela (Meisn.) Kosterm.	1	0,13	0,01	0,09	0,00	0,03	10,00	0,48	0,06	0,20
Jacaranda copaia (Aubl.) D. Don	1	0,08	0,01	0,09	0,00	0,02	10,00	0,48	0,06	0,20
TOTAL	1082	394,62	10,82	100,00	3,95	100,00	2070,00	100,00	100,00	100,00